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@ Background @ Research Questions @ Methodology @ Limitations
Experiments will compare the resulting sets of the methods
e Sandboxing for Software Security: e How do dynamic and static analysis for Diff and SSH on x86-64. e Dynamic
o restrict access to system resources, methods compare in identifying * Dynamic © Hard to cover all T ' '
limiting attack surface [1] required system calls for applications, 1. Run Strace [7] on Diff and SSH execution paths
o limit system calls (os to kernel) and how can execution phase 2. Parse output into a set of syscalls with Sparse [8] © Requires manual labour
e Static system call analysis: separation further refine the system 3. Repeat steps 1 & 2 on multiple inputs (using script) and insights - ar 7
o inspecting the code and/or binary call sets? 4. Merge results using our tool [9] o Harder for background %
[2,3.4 5] e Which system calls are required for diff ) applications o 1]
e Dynamic system call analysis: and SSH, according to a custom * Static * Static 5 e ] .
o evaluate execution upon realistic dynamic approach and the static 1. Run Sysfilter [5] on the binaries of Diff and SSH o Unused syscalls also ;%
inputs [3] approach Sysfilter [5] 2.Parse syscall numbers to syscall names with our tool, found i
e Execution phase seperation e Which phases can be identified in SSH using syscall list from Strace [10] o Some larger applications r |: AR
o Restrict system calls based on and what effect does seperating the  Execution phase seperation hard to analyse, due to T ]:L'
execution phase [6] system calls for each phase have? 1. Gather traces of SSH-client using Strace missing debug symbols . o . ,
© block unnecessary calls after 2. Stop execution before login, after login, after using * Solution: Dynamic hyj[ﬂm.-.('tmmm_m Chestnutp2
: / , nalysis metheod
initialization connection . Combining both . Figure 3: Percentage of all x86-64 system calls required
3. Obtain syscalls per phase using Sparse methods, as done with  for diff per analysis method

Chestnut [2]

o p1 = static, p2 = dynamic
@ Results: Diff @ Results: Execution

Phase Seperation

e Dynamic: 24 found, 7% of all

e Static 59 found, 18% of all ' l J P * 4 phases: 08 .
e Dynamic is mostly subset of Static ) . ° Initialization Conclusions
o Only new syscalls for Thread _ © Authentication
managements & access rights A © Session establishment e Static and dynamic analysis both eliminate more than 60%
¢ Static included many extra calls £ or 25 ?.V\{ork.ing - of unnecessary system calls for both diff and SSH
o Obviously wrong: Networking E 22 * Initialization and auther?tlcatlon e Static analysis covers every scenario but has large
o possibly right: Signalling = gy - closely bound, so considered overhead
x - together. e Dynamic analysis might miss some edge cases but
ST | 13 provides the tightest set
: | e So, there is a trade-off between maintaining full
@ Results: S5H 10 - 10 LN | | L functionality and achieving maximum attack surface
_ =6 reduction
¢ Dynamic 83 found, 25% of all J ! L — = H | — e A hybrid approach like Chestnut [2] mitigates the
e Static 111 found, 35% of all Dnift SSH-client ~ SS5H-server SSH-combined '—"“E drawback of both method
e Possible to split dynamic Application o Gl |- ' - ] e Execution phase seperation works well for enhancing
analysis of SSH into 2 parts: 00 Dynamic 0 Static "E an l _ 20 | syscall reduction for large applications
client and server. Figure 1 Percentage of all x86-64 system calls required per % 51 o Working phase SSH only requires 20% of what the
e Dynamic and static big application, per analysis method o anH |y [ 1 _ — _ entire appliation would normally require
differences ¥ ‘)
¢ In dynamic but not in static:
© Process/thread All It SeSs10Mm Working
management Phiise

o I/O operations

¢ |In static but not in dynamic: “]I:l SSH-clientl 0 x86-64 \
09 ) Future work

o Likely wrong: mkdir, Figure 2: Percentage of system calls required per phase of SSH.
gettimeofday Compared to either the number of required system calls for SSH-client
o Possibly right: exit, listen or to all available in x86-64.
oo e Using fuzzing to get all paths covered [2]
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