N - - m Author
N
system Gall Sandboxing: Enhancing Security Through Analysis | oo
L.L.JdeBruin@student.tudelft.nl

Responsible Professor

Comparing Dynamic and Static System Gall Analysis for Diff and SSH Alexios Voulimeneas

]
TU Delft

@ Background @ Research Questions @ Methodology @ Limitations
Experiments will compare the resulting sets of the methods
e Sandboxing for Software Security: e How do dynamic and static analysis for Diff and SSH on x86-64. e Dynamic
o restrict access to system resources, methods compare in identifying * Dynamic © Hard to cover all T ' '
limiting attack surface [1] required system calls for applications, 1. Run Strace [7] on Diff and SSH execution paths
o limit system calls (os to kernel) and how can execution phase 2. Parse output into a set of syscalls with Sparse [8] © Requires manual labour
e Static system call analysis: separation further refine the system 3. Repeat steps 1 & 2 on multiple inputs (using script) and insights - ar 7
o inspecting the code and/or binary call sets? 4. Merge results using our tool [9] o Harder for background %
[2,3.4 5] e Which system calls are required for diff) applications o 1]
e Dynamic system call analysis: and SSH, according to a custom * Static * Static 5 e] .
o evaluate execution upon realistic dynamic approach and the static 1. Run Sysfilter [5] on the binaries of Diff and SSH o Unused syscalls also ;%
inputs [3] approach Sysfilter [5] 2.Parse syscall numbers to syscall names with our tool, found i
e Execution phase seperation e Which phases can be identified in SSH using syscall list from Strace [10] o Some larger applications r |: AR
o Restrict system calls based on and what effect does seperating the Execution phase seperation hard to analyse, due to T]:L'
execution phase [6] system calls for each phase have? 1. Gather traces of SSH-client using Strace missing debug symbols . o . ,
© block unnecessary calls after 2. Stop execution before login, after login, after using * Solution: Dynamic hyj[ﬂm.-.('tmmm_m Chestnutp2
: / , nalysis metheod
initialization connection . Combining both . Figure 3: Percentage of all x86-64 system calls required
3. Obtain syscalls per phase using Sparse methods, as done with for diff per analysis method

Chestnut [2]

o p1 = static, p2 = dynamic
@ Results: Diff @ Results: Execution

Phase Seperation

e Dynamic: 24 found, 7% of all

e Static 59 found, 18% of all ' l J P * 4 phases: 08 .
e Dynamic is mostly subset of Static) . ° Initialization Conclusions
o Only new syscalls for Thread _ © Authentication
managements & access rights A © Session establishment e Static and dynamic analysis both eliminate more than 60%
¢ Static included many extra calls £ or 25 ?.V\{ork.ing - of unnecessary system calls for both diff and SSH
o Obviously wrong: Networking E 22 * Initialization and auther?tlcatlon e Static analysis covers every scenario but has large
o possibly right: Signalling = gy - closely bound, so considered overhead
x - together. e Dynamic analysis might miss some edge cases but
ST | 13 provides the tightest set
: | e So, there is a trade-off between maintaining full
@ Results: S5H 10 - 10 LN | | L functionality and achieving maximum attack surface
_ =6 reduction
¢ Dynamic 83 found, 25% of all J ! L — = H | — e A hybrid approach like Chestnut [2] mitigates the
e Static 111 found, 35% of all Dnift SSH-client ~ SS5H-server SSH-combined '—"“E drawback of both method
e Possible to split dynamic Application o Gl |- ' -] e Execution phase seperation works well for enhancing
analysis of SSH into 2 parts: 00 Dynamic 0 Static "E an l _ 20 | syscall reduction for large applications
client and server. Figure 1 Percentage of all x86-64 system calls required per % 51 o Working phase SSH only requires 20% of what the
e Dynamic and static big application, per analysis method o anH |y [1 _ — _ entire appliation would normally require
differences ¥ ‘)
¢ In dynamic but not in static:
© Process/thread All It SeSs10Mm Working
management Phiise

o I/O operations

¢ |In static but not in dynamic: “]I:l SSH-clientl 0 x86-64 \
09) Future work

o Likely wrong: mkdir, Figure 2: Percentage of system calls required per phase of SSH.
gettimeofday Compared to either the number of required system calls for SSH-client
o Possibly right: exit, listen or to all available in x86-64.
oo e Using fuzzing to get all paths covered [2]
References o C - - Py
omparing analysis on more applications
1] V. Prevelakis and D. Spinellis, “Sandboxing applications,” in 2001 USENIX Annual Technical Conference (USENIX ATC 01), (Boston, MA), USENIX Association, June 2001. o Aut P t J lvsis & filt PP t £ t o
2] C. Canella, M. Werner, D. Gruss, and M. Schwarz, “Automating seccomp filter generation for linux applications,” in CCSW 2021, 2021 utomating analysis IIKer generation tor custom metho

2

3] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis, “Confine: Automated system call policy generation for container attack surface reduction,” in RAID 2020, 2020 e Automating phase seperation
4] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, “Temporal system call specialization for attack surface reduction,” in USENIX Security 2020, 2020.
5] N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca, and V. P. Kemerlis, “sysfilter: Automated system call filtering for commodity software,” in RAID 2020, 2020. ° InveStlgate overhead of SySfIIter and potentlally reduce it
6] Zhang. et al.,, “Building dynamic system call sandbox with partial order analysis,” in Proceedings of the ACM on Programming Languages, vol. 7, 2023
7] M. Kerrisk, “man7.” [Online]. Available: https://man7.org/linux/man-pages/manl/strace.1html. (accessed Apr. 28, 2024).

8] D. de Bruin, “sparse.” GitHub. [Online]. Available: https://github.com/DucodB/sparse. (accessed Apr. 28, 2024).

9] D. de Bruin, “unique-file-merge.” GitHub. [Online]. Available: https://github.com/DucodB/unique-file-merge. (accessed May 4, 2024).

516] D. de Bruin, “syscall-numbertoname.” GitHub. [Online]. Available: https://github.com/DucodB/syscall-numbertoname. (accessed May 27, 2024).

