
01 Background

Figure 3: Percentage of all x86-64 system calls required
for diff per analysis method

Figure 2: Percentage of system calls required per phase of SSH.
Compared to either the number of required system calls for SSH-client
or to all available in x86-64.

Figure 1: Percentage of all x86-64 system calls required per
application, per analysis method.

02 Research Questions 03 Methodology

04 Results: Diff

05 Results: SSH

Dynamic 83 found, 25% of all
Static 111 found, 35% of all
Possible to split dynamic
analysis of SSH into 2 parts:
client and server.
Dynamic and static big
differences
In dynamic but not in static:

Process/thread
management
I/O operations

In static but not in dynamic:
Likely wrong: mkdir,
gettimeofday
Possibly right: exit, listen

07 Limitations

06 Results: Execution
Phase Seperation

08 Conclusions

09 Future work

Using fuzzing to get all paths covered [2]
Comparing analysis on more applications
Automating analysis & filter generation for custom method
Automating phase seperation
Investigate overhead of Sysfilter and potentially reduce it

Static and dynamic analysis both eliminate more than 60%
of unnecessary system calls for both diff and SSH
Static analysis covers every scenario but has large
overhead
Dynamic analysis might miss some edge cases but
provides the tightest set
So, there is a trade-off between maintaining full
functionality and achieving maximum attack surface
reduction
A hybrid approach like Chestnut [2] mitigates the
drawback of both method
Execution phase seperation works well for enhancing
syscall reduction for large applications

Working phase SSH only requires 20% of what the
entire appliation would normally require

Sandboxing for Software Security:
restrict access to system resources,
limiting attack surface [1]
limit system calls (os to kernel)

Static system call analysis:
inspecting the code and/or binary
[2,3,4,5]

Dynamic system call analysis:
evaluate execution upon realistic
inputs [3]

Execution phase seperation
Restrict system calls based on
execution phase [6]
block unnecessary calls after
initialization

[1] V. Prevelakis and D. Spinellis, “Sandboxing applications,” in 2001 USENIX Annual Technical Conference (USENIX ATC 01), (Boston, MA), USENIX Association, June 2001.
[2] C. Canella, M. Werner, D. Gruss, and M. Schwarz, “Automating seccomp filter generation for linux applications,” in CCSW 2021, 2021
[3] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis, “Confine: Automated system call policy generation for container attack surface reduction,” in RAID 2020, 2020
[4] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, “Temporal system call specialization for attack surface reduction,” in USENIX Security 2020, 2020.
[5] N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca, and V. P. Kemerlis, “sysfilter: Automated system call filtering for commodity software,” in RAID 2020, 2020.
[6] Zhang. et al., “Building dynamic system call sandbox with partial order analysis,” in Proceedings of the ACM on Programming Languages, vol. 7, 2023
[7] M. Kerrisk, “man7.” [Online]. Available: https://man7.org/linux/man-pages/man1/strace.1.html. (accessed Apr. 28, 2024).
[8] D. de Bruin, “sparse.” GitHub. [Online]. Available: https://github.com/DucodB/sparse. (accessed Apr. 28, 2024).
[9] D. de Bruin, “unique-file-merge.” GitHub. [Online]. Available: https://github.com/DucodB/unique-file-merge. (accessed May 4, 2024).
[10] D. de Bruin, “syscall-numbertoname.” GitHub. [Online]. Available: https://github.com/DucodB/syscall-numbertoname. (accessed May 27, 2024).

References

Dynamic: 24 found, 7% of all
Static 59 found, 18% of all
Dynamic is mostly subset of Static

Only new syscalls for Thread
managements & access rights

Static included many extra calls
Obviously wrong: Networking
possibly right: Signalling

Duco de bruin 
L.L.J.deBruin@student.tudelft.nl

Author

Alexios Voulimeneas
Responsible Professor

How do dynamic and static analysis
methods compare in identifying
required system calls for applications,
and how can execution phase
separation further refine the system
call sets?
Which system calls are required for diff
and SSH, according to a custom
dynamic approach and the static
approach Sysfilter [5].
Which phases can be identified in SSH
and what effect does seperating the
system calls for each phase have?

 Run Strace [7] on Diff and SSH1.
 Parse output into a set of syscalls with Sparse [8]2.
 Repeat steps 1 & 2 on multiple inputs (using script)3.
 Merge results using our tool [9]4.

Dynamic

Static
 Run Sysfilter [5] on the binaries of Diff and SSH1.
Parse syscall numbers to syscall names with our tool,
using syscall list from Strace [10]

2.

Execution phase seperation
 Gather traces of SSH-client using Strace1.
 Stop execution before login, after login, after using
connection

2.

 Obtain syscalls per phase using Sparse3.

Experiments will compare the resulting sets of the methods
for Diff and SSH on x86-64.

4 phases:
Initialization
Authentication
Session establishment
Working

Initialization and authentication
closely bound, so considered
together.

Dynamic
Hard to cover all
execution paths
Requires manual labour
and insights
Harder for background
applications

Static
Unused syscalls also
found
Some larger applications
hard to analyse, due to
missing debug symbols

Solution:
Combining both
methods, as done with
Chestnut [2]
p1 = static, p2 = dynamic

System Call Sandboxing: Enhancing Security Through Analysis
Comparing Dynamic and Static System Call Analysis for Diff and SSH


