
Multi-Agent Pathfinding with Matching
 — Multiple agents in a team move through a maze towards
a goal belonging to their team
 — Each wait/move action has a unit cost
 — Collisions are not allowed

Goal: optimizing the SoC cost metric

Robbin Baauw
R.W.Baauw@student.tudelft.nl

Adapting CBM to optimize the
Sum of Costs

Mathijs de Weerdt
Jesse Mulderij

 — Sum of Costs (SoC): sum of path lengths (15)
 — Makespan: maximum path length (4)

Cost metric

Conflict Based Min-Cost-Flow (CBM)
Consists of two parts:
 — High-level solver: detect collisions between paths found
by the low-level solver and add constraints in a Constraint
Tree.
 — Low-level solver: optimizes the makespan by solving a
network flow problem per team using the constraints im-
posed by the high-level solver. This is done using a min-cost
max-flow algorithm on a time-expanded network.

Experiments

Conclusion
 — The SSP technique is much faster than the ILP tech-
nique but it is complex to adapt to SoC optimally
 — CBMxSOC performs very well with few conflicts and can
be improved by adding conflict avoidance in the low-level
solver
 — Future work can look into MDD-SAT and disappearing
agents

How can CBM be adapted to minimize the
SoC?
 — Can the succesive shortest path (SSP) algorithm be used
to minimize the SoC?
 — How does the run-time performance compare to the
baseline makespan CBM?
 — Can the CBM edge weight heuristic be adapted to mini-
mize the SoC?

BACKGROU N D

P RIOR WORK

RESEARCH QU ESTION

CBM ADAPTATIONS

c0

c1

no-goal0 goal0

c2

c2
c2

SSP w/ SoC (CBMxSOC)
 — Adjust edge costs to push an agent to a goal node as fast
as possible
 — Optimality: likely optimal, no counter-examples found
in exhaustive testing
 — Performance: decent, can be improved by actively re-
ducing conflicts on the low-level (such as CAT / CBM do)

General extensions
 — First find the time step for which an optimal SoC can cer-
tainly be found
 — Re-use the time-expanded graph instead of rebuilding it
on each usage
— Two options for solving the problem: Integer Linear Pro-
gramming (ILP) and Successive Shortest Path (SSP)

EXPERIMENTS

CONCLUSION

 — SSP can handle bigger maps than ILP due to ILP model
size limits

 — CBMxSOC performs well against other algorithms due to
non-exponential scaling regarding the number of agents

 — On larger maps, the time-expanded network also be-
comes too large for the SSP solver

ILP w/ SoC
 — Add binary “will-stay-on-goal-after-this-time” indicators
and subtract the sum of these indicators from the objective
 — Optimality: optimal since path length & NF cost are
equal
 — Performance: slow, as basic ILP is not tailored to this ex-
act problem

cost(NF) = 6 - sum(i) = 4 = SoC

goal3no-goal2no-goal0 goal1 goal4

i3 = 1i2 = 0

goal5

i4 = 1i1 = 0i0 = 0

goal1

goal2

no-goal1

c1

c1

no-goal0 goal0

c1

c1
c1

goal1

goal2

no-goal1

