
Program synthesis is the process of
automatically generating programs
satisfying a given specification.

FrAngel - is a program synthesis
algorithm that is based on two main
concepts - fragments and angelic
conditions. Fragments are parts of
programs that were found to be
useful in previous iterations of the
algorithm. While angelic conditions
are placeholders for the condition of
control structures such as ifs and
loops.

x + 8 * y

Q1: How do we define program
synthesis from rewards?

Q2: How to explore game environments
to discover useful actions?

Q3: How do we adjust the FrAngel
program synthesizer to discover
diverse subprograms?

if (<angelic>)

while (<angelic>)
8 * yx 8

y

x = 5 → 7
x = 1 → 3
x = 0 → 2

x + 1 + 1
Num = Num + Num
Num = x
Num = 1

Generalise FrAngel
Allow arbitrary iterators
Allow any grammar

Define program synthesis from
rewards - the reward is split into
different reward thresholds
represented as the output of IO
examples

Integration with Minecraft
environment - the algorithm is run
with checkpointing, starting from the
previous best position from the last
cycle

Fragment_Num = 2
Num = Fragment_Num
Num = 1 | 2

[8, 16, 24, 32, 40, 48]

if <Hole> Statement end
Statement = if Bool Statement end

03

01 02

How do we adjust the FrAngel program
synthesiser to discover diverse subprograms?

Georgi Latsev
g.s.latsev@student.tudelft.nl

Author
Sebastijan Dumančić
s.dumancic@tudelft.nl

Tilman Hinnerichs
t.r.hinnerichs@tudelft.nl

Responsible Professor

Supervisor

Introduction Research
Questions

Methodology

Playing Games with Program Synthesis: Solving Minecraft

04 Experiments

Exploration - searches the
unexplored space to find useful
actions and programs.

Game rewards - the agent receives a
reward based on the distance moved
toward or away from the goal.

Run experiments - experiment with various
modifications for exploration on the dense
navigation task in MineRL

One of the experiments investigates how varying the
smallest reward checkpoints affects the
effectiveness of the FrAngel algorithm by altering the
length of its pure exploration phase and subsequently
the quality of the fragments utilized.

The results are limited due to the
low amount of runs for each setup
compared to the many possible
combinations of world and random
seeds.

Fig 1: average runtime for each reward setup for each world

Fig 2b: maximum reward over time for a particular setup

It was found that the difficulty of the easiest
output example should be balanced for the best
performance - optimizing the exploration.

Easier output examples could lead to less relevant
fragments - that will guide the search in the wrong
direction.

Harder output examples lead to more exploration
before any fragments are found and exploited.

05 Conclusion and
Limitations

Fig 2a: maximum reward over time for a particular setup

We introduced generalised
FrAngel, defined program synthesis
from rewards via input-output
examples and tackled the
navigation task in Minecraft.

mailto:s.dumancic@tudelft.nl
mailto:t.r.hinnerichs@tudelft.nl

