
Use program with best reward as first instructions to guide
the search.

Redefine partial solutions, observational equivalence, and
update function to learn programs from rewards with Probe.

Increase exploration by changing grammar, cycle length,
update function.

By increasing exploration it is possible to avoid local maxima
and solve more environments.

Depending on the environment, increasing exploration can
either increase or decrease runtime.

Use program with best reward as first instructions to guide
the search.

Redefine partial solutions, observational equivalence, and
update function to learn programs from rewards with Probe.

Increase exploration by changing grammar, cycle length,
update function.

By increasing exploration it is possible to avoid local maxima
and solve more environments.

Depending on the environment, increasing exploration can
either increase or decrease runtime.

6 Conclusions

5 Experiments & results

 Figure 1. Average runtimes of experiments 1-5 over ten runs in seconds. A
missing bar means that the experiment timed out for at least one run.

 Figure 1. Average runtimes of experiments 1-5 over ten runs in seconds. A
missing bar means that the experiment timed out for at least one run.

900

800

700

600

500

400

300

200

100

 0

Table 1. Results of experiment 6 over ten runs.
This table shows the number of successful runs,
the minimum runtime, and the maximum runtime per

each world.

Table 1. Results of experiment 6 over ten runs.
This table shows the number of successful runs,
the minimum runtime, and the maximum runtime per

each world.

Experiment 1: Baseline. Unable to solve worlds 2
and 5, gets stuck in local maxima.

Experiment 2: Attempt to get out of cave in
world 5 by allowing multiple actions after best

program. Did not solve world 5. Changed runtimes
of other worlds even though they do not use

multiple actions after the best program.

Experiment 3: Enumerate different directions
before different step sizes to find right direction

faster. Can solve world 5.

Experiment 6: Randomise probabilities after
each cycle. Able to solve world 2 in two runs out
of ten. Tends to be more successful in worlds

with fewer obstacles.

Experiment 1: Baseline. Unable to solve worlds 2
and 5, gets stuck in local maxima.

Experiment 2: Attempt to get out of cave in
world 5 by allowing multiple actions after best

program. Did not solve world 5. Changed runtimes
of other worlds even though they do not use

multiple actions after the best program.

Experiment 3: Enumerate different directions
before different step sizes to find right direction

faster. Can solve world 5.

Experiment 6: Randomise probabilities after
each cycle. Able to solve world 2 in two runs out
of ten. Tends to be more successful in worlds

with fewer obstacles.

Dense navigation environment: reach diamond block
approximately 64 blocks from spawn. Receive reward based on

how much closer to goal after each step.

Grammar: 1 action after best program, 8 directions, 6 step
sizes, always sprint and jump.

Run each experiment ten times on five worlds.

4 Experimental setup

1. Generalise Probe.

Allow the use of arbitrary search algorithms.
Easily changeable parameters for ease of experimentation.

Use number of programs as cycle length instead of levels.
Keep track of cycle in Probe instead of in search algorithm.

Add evaluation cache, set of partial solutions to Probe.

2. Define a grammar and a method for evaluating
generated programs in MineRL.

Program: sequence of (steps, action) instructions.

Evaluation: iterate over sequence and execute the action
steps times.

3. Define program synthesis from rewards for
MineRL.

Update grammar to use program with highest reward for first
instructions in sequence. Search continues from best position.

4. Adjust Probe to learn MineRL programs from
rewards.

Observational equivalence: programs end up in approximately
the same position.

Partial solution: program that improves the best reward.

Selection function: select 5 programs with highest reward.

Update function: increase probabilities of last instructions. Set
start to best program.

5. Find ways to increase the amount of
exploration and analyse their effect on runtime.

3 Methodology
How to define program synthesis from rewards?

How to adjust Probe to learn programs from rewards?

How to increase the amount of exploration and how does it
affect the runtime when learning from rewards with Probe?

How to define program synthesis from rewards?

How to adjust Probe to learn programs from rewards?

How to increase the amount of exploration and how does it
affect the runtime when learning from rewards with Probe?

2 Research Questions
Program synthesis is the task of generating a program

according to some user-provided specification.

Different methods of specification: I/O examples, natural
language, formal specification, traces.

Explore novel method of specification: rewards.

MineRL - Python library used for interacting with Minecraft.

Synthesis might get stuck in local maxima. Try to avoid by
increasing exploration.

Probe - program synthesiser that updates the probabilities of
a probabilistic CFG during execution.

Guided bottom-up search - search algorithm used by Probe
that enumerates programs by increasing cost level.

Partial solution - program that solves some examples.

Update function - increase probabilities of rules that appear
in promising partial solutions.

1 Introduction

Author
Nils Marten Mikk

n.m.mikk@student.tudelft.nl

Author
Nils Marten Mikk

n.m.mikk@student.tudelft.nl

Supervisor
Tilman Hinnerichs

t.r.hinnerichs@tudelft.nl

Supervisor
Tilman Hinnerichs

t.r.hinnerichs@tudelft.nl

Responsible Professor
Sebastijan Dumancic
s.dumancic@tudelft.nl

Responsible Professor
Sebastijan Dumancic
s.dumancic@tudelft.nl

