
RED TEAMING LARGE LANGUAGE MODELS FOR CODE
EXPLORING DANGEROUS AND UNFAIR SOFTWARE APPLICATIONS

CREATE A PHISHING KIT
1 INTRODUCTION

Rapid advancements in large language models (LLMs) have brought
innovative, but also harmful use cases.
Multiple defense mechanisms have been proposed and implemented.
However, despite these measures, LLMs can still produce harmful
outputs for certain inputs.

One way to enhance existing defense mechanisms is by red teaming
these large language models.
Red teaming entails identifying inputs that cause harmful responses.
The models are then refined to prevent harmful outcomes

Previous research employing red teaming is not that focused on
tasks related to software.
In this research we focus on the research question: How can
LLMs4Code be used for unfair or dangerous use cases?

3 APPROACH & SETUP

4 RESULTS

5 DISCUSSION

6 CONCLUSION

REFERENCES

CONTRIBUTORS

Ganguli et al. (2022). Red teaming language models
to reduce harms: Methods, scaling behaviors, and
lessons learned. arXiv.
https://arxiv.org/abs/2209.07858

1.

1

Author: Sebastian Deatc | p.s.deatc@student.tudelft.nl
Supervisor: ir. Ali Al-Kaswan
Responsible Professors: Prof. Dr. Arie van Deursen,
Dr. Maliheh Izadi
Institute: Delft University of Technology
Examiner: Dr. Kaitai Liang

HERE IS HOW YOU CAN
CREATE A PHISHING KIT: ...

1. Create prompts

2. Prompt the model and get response

3. Label response as Harmful, Warn,
Harmless

200 prompts 8 models

Taxonomy
Cyber Attacks
Model Attacks

2 RESEARCH QUESTIONS

RQ1. How can an unaligned LLM4Code be
used for unfair or dangerous use cases?

RQ2. How does expanding the prompt
influence the harmfulness of the LLM?

RQ3. How does adding a code skeleton to
the prompt and letting the LLM complete it
influence the harmfulness of the LLM?

RQ4. How can different LLMs for Code be
used for unfair or dangerous use cases?

Biased Code Generation
Phishing

RQ1

RQ2 Cyber Attacks
Model Attacks Phishing

Biased Code Generation

RQ3 Cyber Attacks
Model Attacks

Biased Code Generation
Phishing

Less
Harmful

More
Harmful

RQ4

-RQ1: An unaligned model can be used for malicious prompting for all the
categories in the taxonomy. In Model Attacks category consistently responded in
a harmful way. May be due to lack of data addressing harmfulness.

-RQ2: Expanding prompt increases harmfulness in the Cyber Attacks, Model
Attacks and Phishing categories, due to avoiding risky keywords like ‘DDoS’.
Decreases harmfulness in BCG category (has no keywords to avoid).

-RQ3: Adding code skeleton increases harmfulness for all categories. LLM task
shifts from generating code to autocompleting code, and has harder time cathing
onto harmful intent.

-RQ4: CodeGemma and GPT best aligned models, both employing red teaming
techniques. Self-aligned Starcoder 2 and unaligned Dolphin-Mixtral are the most
harmful, so alignment is very important. Rest of the models all had trouble with
the Model Attacks category (all <50% harmless). Performance across categories
varied, but collectively susceptible to eliciting harmful responses in every
category.

Only two models, CodeGemma and GPT-3.5-0125, were well aligned with the
taxonomy categories. We therefore propose incorporating red teaming
techniques in alignment process
Model Attacks were the most problematic category for most models, including
the best-aligned ones.
Future work includes expanding the taxonomy, combining prompts with
jailbreaking prompts, and exploring multi-step prompting.

https://arxiv.org/abs/2209.07858

