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Introduction

Stochastic scheduling is a crucial and rapidly growing field that attracts

significant interest across numerous domains, particularly in the devel-

opment of digital factories.
We focus on the stochastic

Multi-Mode Resource Constrained

Project Scheduling Problem

(MMRCPSP) with hard deadlines. It

involves assigning start times and

execution modes to tasks under

resource limits and precedence and

deadline constraints. Each task can run

in multiple modes, each with different

durations and resource requirements.

Multi-mode resource constrained

project scheduling problem

illustration [4].

Stochastic Scheduling Algorithms

Algorithms to solve this problem lie in a spectrum that ranges from fully

proactive to fully reactive approaches. The focus of this research is a

proactive, a reactive and a hybrid approach [2].

Proactive approach: Computes a fixed schedule in advance using

sampled durations and strictly follows it during execution.

Reactive approach: Starts with an initial schedule based on

estimated durations and dynamically adjusts it in real-time as

actual durations are revealed during execution.

STNU-based approach: A hybrid method that creates a partial

order schedule with built-in temporal flexibility, enabling real-time

scheduling decisions in response to uncertainty.

Research Question

How does a Simple Temporal Network with Uncertainty (STNU) based

approach fare against other state of the art algorithms such as proactive

and reactive approaches?

How do sampling strategies affect model performance?

How does the variance of the durations’ distributions affect

performance?

How do the approaches perform with different duration

distributions (e.g., uniform vs. binomial)?

How do the algorithms scale with larger instances (e.g., more

tasks)?

Methodology

Sampling:

Robust approach: use the upper bounds of the duration

distributions

Mean approach: use the mean of the duration distributions

Quantile-based approach: use some quantile of the distributions

as the sample, e.g. 0.9 quantile

Modelling the deadlines:

Deadlines can be modelled as dummy tasks starting at 0 and

having a duration equal to the deadline

Tasks have an ordering constraint which states that they need to

be completed before their respective deadline task is completed

Mode selection:

Modes are chosen offline before scheduling.

This simplifies computation but limits adaptability during

execution.

Evaluation

The following metrics are used:

Feasibility ratio: Fraction of simulations where all constraints are

met.

Execution time: Includes both offline planning and online

adaptation.

Makespan: Total time to complete all tasks.

Experimental Process

To evaluate and compare the approaches, multiple runs are conducted

on instances from the PSPLib [3] with varying task counts (10 and

20), different duration distributions (uniform and binomial), and vary-

ing levels of variance. Some results are compared using the Wilcoxon

Matched-Pairs Rank-Sum Test [1] for more insight.

Results

(a) Uniform distribution (b) Binomial distribution

Figure 1. Makespan values across three approaches. Results are based on 100

instances with 10 tasks and a noise factor of 1.

(a) Uniform distribution (b) Binomial distribution

Figure 2. Feasibility ratios across three approaches. Results are based on 100

instances with 10 tasks and a noise factor of 1.

(a) Uniform distribution (b) Binomial distribution

Figure 3. Scatter plots of feasibility ratio against makespan for all sampling methods

and both uniform and binomial distributions respectively. The gray line indicates the

pareto optimal frontier.

(a) Online execution time (b) Offline execution time

Figure 4. Average execution times across three approaches. Based on 100

instances, each with 10 scenarios, under two noise factors (1 and 2) and two

instance sizes (10 and 20).

Methods\Quantile 0.5 0.75 0.9 1

Reactive-Proactive Proactive Reactive Reactive Reactive

Reactive-STNU STNU STNU STNU STNU

Proactive-STNU Proactive STNU STNU STNU

Table 1. Results of the Wilcoxon Matched-Pairs Rank-Sum Test between methods

across different sampling quantiles for the binomial distribution. Each value

considers all noise factor-instance size combinations. Cells in red indicate

comparisons with non-significant differences (p-value > 0.05), using the Wilcoxon
signed-rank test with α = 0.05.

Methods\Quantile 0.5 0.75 0.9 1

Reactive-Proactive 0.12 2.46e-47 3.88e-211 1.40e-267

Reactive-STNU 0.72 0.87 5.25e-13 3.57e-150

Proactive-STNU 3.28e-12 0.67 8.51e-35 1.12e-224

Table 2. p-values from Wilcoxon signed-rank tests comparing method pairs across

different quantile-based sampling strategies. The significance level is set to α = 0.05;
values in red indicate non-significant results (p > 0.05).

Analysis

STNU produces better schedules for robust sampling than the

other approaches.

STNU consistently achieved higher feasibility than the other

methods.

Proactive-0.5 yielded best makespans but lower feasibility; robust

sampling improved feasibility with longer schedules.

STNU-robust and proactive-0.5 appear consistently on the Pareto

frontier showcasing the tradeoff between efficiency and

robustness.

Reactive algorithm requires substantially more online time than

the other two.

STNU needs significantly more offline time, as expected.

Conclusions

Evaluated proactive, reactive, and hybrid STNU-based methods

for stochastic MMRCPSP with deadlines.

Extended prior models to handle multi-mode tasks and strict

deadlines using dummy-task enforcement.

STNU showed strong feasibility and robustness, balancing

flexibility and efficiency.

Sampling strategy proved to be a deciding factor for model

performance.

A core conflict exists between achieving optimality and ensuring

robustness.
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