
Eliminating bugs in type inference algorithms by describing them with precise types
Supervisor


Sára Juhošová
Author


Vincent Pikand
Responsible Professor


Jesper Cockx

Introduction
Static type systems enable programmers to define their 
intentions within the type signatures of their programs. By 
doing so, type checkers can prevent numerous common

errors:

1

2

3

4

5

6

data Coordinate = { x :: Double, y :: Double }

c = Coordinate {5, 5}

print(c.z)

Error: z does not exist in record type Coordinate

However, as type systems become more complex it becomes 
increasingly more likely that the type checker itself contains 
bugs [0].

Type 

Checker

Invalid

Valid

add 5 5

add 5 “5”

Correct-by-Construction programming
Correct-by-Construction is a style of programming that uses 
precise types to ensure that a program adheres to its 
specification. Agda [1] is a dependently typed programming 
language specifically designed for CbC programming. We 
present a qualitative evaluation of the advantages and 
disadvantages of using CbC programming to implement type 
inference for the simply typed λ-calculus (STLC).

Type Inference
Type inference deduces the 
types of terms without 
explicit type annotations 
from the programmer.

function f(x) {

  return x * 2;

}

function f(x : int) : int {

  return x * 2;

}

false negative

false positive

Agda
In Agda, types can depend on values, hence the name 
dependently typed language. This allows us to create 
expressive datatypes, encoding rich information such as 
mathematical properties or algorithms.

1

2

3

data ≤ : N → N → Set where

z≤n : zero ≤ n

m≤n : m ≤ n → m+1 ≤ n+1

The Hindley-Milner (HM) Algorithm
The HM [2] algorithm is a type inference algorithm that 
requires no type annotations from the programmer. It always 
returns the most general type of a term. We can break down 
the HM algorithm into 2 steps: constraint generation and 
unification.

(‘d -> ‘e) -> [‘d] -> [‘e]

‘a -> ‘b -> ‘c

‘a -> [‘d] -> [‘e]

(‘d -> ‘e) -> ‘a -> [‘e]

(int -> ‘e) -> [int] -> [‘e]

(int -> string) -> [int] -> [string]

Too general

allows invalid inputs

Too specific

does not allow valid inputs

Most general type

allows the most number

of “instantiations” without


denying any valid ones

The types of the map function

Constraint Generation
Constraint generation describes the relationships between 
types. We implemented a sound constraint generation 
algorithm. The datatype for constraint generation is extremely 
precise – it exposes nuanced details that aid our understanding 
of the algorithm.

As types are meant to convey intention, using precise types 
elevates this purpose significantly. Thus, including a detailed 
description with motivating examples becomes immensely 
beneficial.

Unification
Unification is what gives meaning to the relationships 
described by constraint generation and tells us how to 
construct the most general type for a term.

We implemented a sound unification algorithm. As constraints 
can be a composition of constraints, e.g. C = A · B, it is difficult 
to show Agda that our algorithm terminates. To circumvent the 
issue, we use a fuel argument, which gives finite steps to solve 
the problem. This is a good thing – an infinitely running type 
checker would be quite tedious.

The complete inference algorithm
The combined algorithm takes an untyped term and returns a 
type. To return a well-typed term, which would imply 
soundness, we’d have to transform complex types in non-trivial 
ways, which is beyond the scope of the thesis.

HM and bidirectional type inference, 
compared

HM

bidir

Basic

moderate

easy

Sound

hard

easy

Complete

very hard

hard

The basic implementation of the HM algorithm in Agda is 
relatively simple. Proving soundness and completeness is 
extremely difficult. 

Implementing bidirectional type inference in Agda is 
considerably simpler. Since it doesn’t require a global view of 
the program, the algorithm can directly deduce the type of a 
term. Thus, soundness is easy to achieve. Completeness is still 
difficult. 

Both methods scale relatively poorly as proofs have to be 
extended with added features.

Conclusion
Dependent types are a powerful tool to describe our ideas and 
subsequently prevent bugs. Being able to use the datatypes is 
strong evidence of understanding the underlying concepts. 
The value of CbC programming depends on the goal of a 
project. If we wish to avoid some bugs, then the CbC approach 
can work, but probably adds too much additional complexity 
for pragmatic programmers.  If the goal is to research type 
checkers, gain a deeper understanding of them, or to develop 
new features, then the CbC approach is invaluable.

Limitations
The discussion did not go into great detail about proving 
techniques in Agda. Thus, a future evaluation could look into 
proving soundness and completeness of the HM algorithm

in Agda and provide a more informative description of the 
proving methods while assessing their difficulty.

References
[0] Stefanos Chaliasos et al. “Well-typed programs can go wrong: a study of typing-
related bugs in JVM compilers”. In: Proc. ACM Program. Lang. 5.OOPSLA (Oct. 
2021). doi: 10.1145/3485500. 

[1] Agda Programming Language. https://github.com/agda/agda. Accessed: 
2024-06-11. 2024.

[2] Luís Damas and Robin Milner. “Principal type-schemes for functional programs”. 
In: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of 
programming languages (Jan. 1982), pp. 207–212. doi: 10.1145/582153.582176.


