EXPLORING SPEED/QUALITY TRADE-OFFS IN DIMENSIONALITY OF ATTENTION MECHANISM

Optimization with Grouped Query Attention and Diverse Key-Query-Value Dimensionalities

INTRODUCTION

Transformers have led to the rise of various language models, including those that generate text. A prominent example is the GPT models used in ChatGPT.

One of the <u>challenges</u> researchers have encountered is optimizing the <u>speed of text generation</u>. This challenge a from autoregressive decoding, where each token is generated sequentially, with each new token contextual dependent on all preceding tokens.

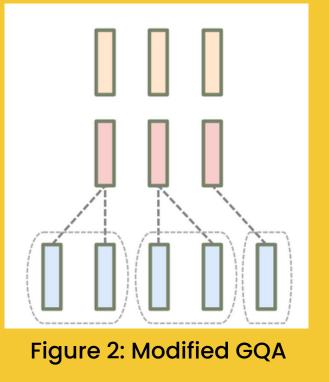
The inference is important to optimize whether:

- Saving on operational costs;
- Allowing the model to operate in a resource-constrai environment (e.g., locally);

 Providing good user experience in real-time applicati Notable speedup techniques include altering attention dimensionality, namely - Multi and Group Query Attention (MQA and GQA) [1] and shrinking key and value vectors

RESEARCH QUEST AND METHOD

RQ1.1 Relationships between speed and quality for different group ratios (GQA)? **RQ1.2** Effect of the total number of attention heads on GQA performance? **RQ2** Speed and quality difference between GQA and KQV models? **RQ3** Combined approach performance? To answer the questions, we train small GPT-Neo [2] models* on the TinyStories dataset [3] and evaluate quality and speed (when applicable). We introduce a modified GQA approach (Figure 2) for more possible group ratios to account for smaller total number of heads.



*To eliminate the number of parameters from the equation, FFN width is adjusted to have the same number of parameters for each model.

BACKGROUND 3

the cache size.

Values	
Keys	
Queries	İ

	2 CONTRIBUTIONS
	Research Goal: To explore possible
	trade-offs and better understand
	the properties of existing
	approaches. This will effectively help select an optimal architecture based
arises	on needs in future applications.
ly	To achieve it, we:
	1. Assess previously non-
	addressed properties of GQA and
	introduce a modified GQA that
• .	allows for more possible
lint	configurations;
tiono	2. Compare GQA models to
tions.	reduced keys/queries and values
on	(KQV) models in terms of speed
s [4].	and quality; 3.Try a combined approach.

Autoregressive decoding forces to store all the previous token representations (called key-value cache). This causes a memory bottleneck, a bigger issue than parallelizable computation [4]. Thus, the techniques are aimed at decreasing

Figure 1 shows a comparison of MHA vs. GQA vs. MHA. As for the MHA vs. GQA vs. KQV:

• MHA has keys and values for all attention heads; • GQA has them for fewer heads (but of the same size); • KQV models have them for all heads, but each vector is smaller (including queries).

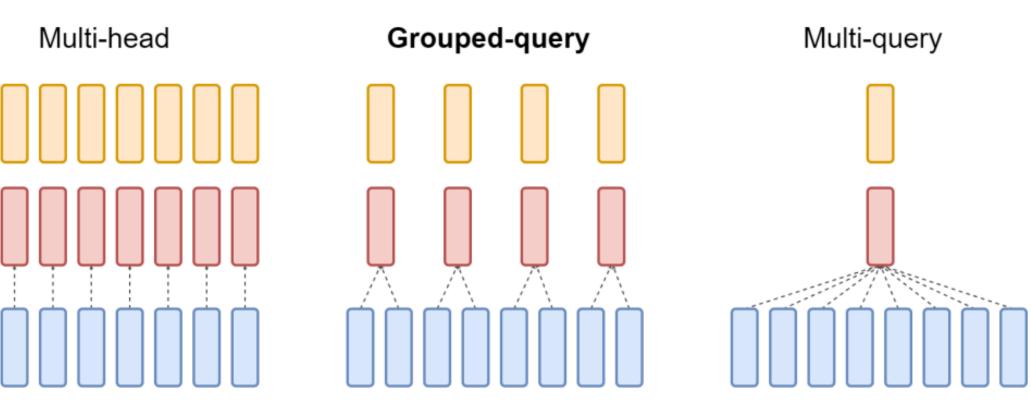


Figure 1: High-level Comparison of Standard Attention, GQA, and MQA Taken from Ainslie et al. [1]

Authors

Khalit Gulamov K.Gulamov@student.tudelft.nl

Arie van Deursen **Responsible Professor**

Maliheh Izadi **Responsible Professor**

Aral de Moor Supervisor

References

[1] J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebrón, and S. Sanghai, "GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints." arXiv, Dec. 23, 2023. Accessed: Apr. 02, 2024. [Online]. Available: http://arxiv.org/abs/2305.13245 [2] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow, March 2021. [3] R. Eldan and Y. Li, "TinyStories: How Small Can Language Models Be and Still Speak Coherent English?" arXiv, May 24, 2023. Accessed: Nov. 01, 2023. [Online]. Available: http://arxiv.org/abs/2305.07759

[4] N. Shazeer, "Fast Transformer Decoding: One Write-Head is All You Need." arXiv, Nov. 05, 2019. Accessed: Apr. 02, 2024. [Online]. Available: http://arxiv.org/abs/1911.02150

Terminology: Group Proportion - the ratio of key-value heads to total heads in GQA models; <u>KQV proportion</u> - the ratio of new key/query and value vectors' sizes to the original ones; <u>batch size</u> - number of inputs processed for inference in parallel.

We train on the TinyStories dataset, evaluate quality on BLiMP and GLUE/SuperGLUE to test natural language understanding and measure inference speed for small and large batch sizes in Python.

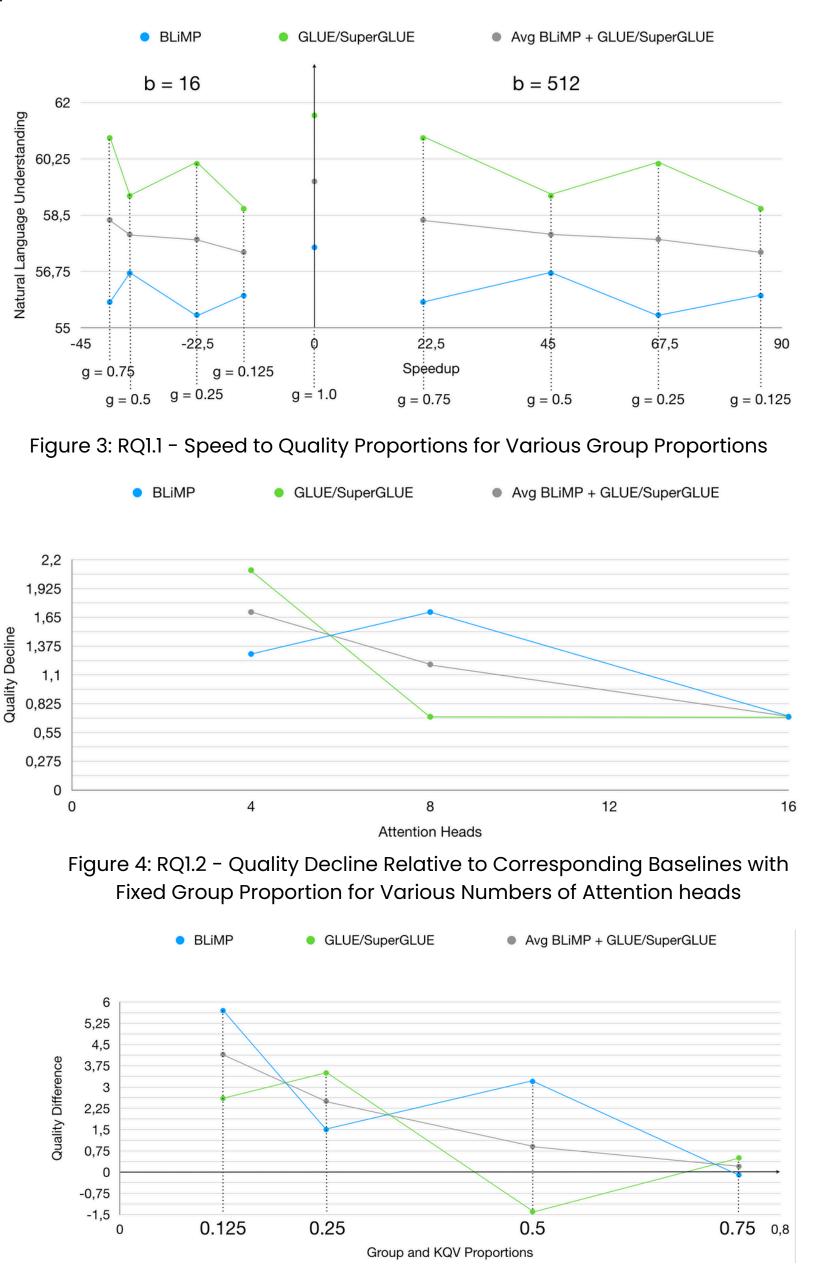


Figure 5: RQ2 - Quality Difference Between GQA and KQV models, where the KQV and GQA proportions are equal. A negative difference means KQV performs better

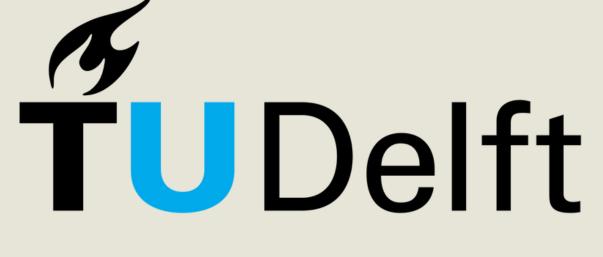
6 DISCUSSION & FUTURE WORK

Implications:

- The lack of proportionality in Figure 3 could be due to the modified GQA overhead;
- The decrease in Figure 4 could be due to removing excessive attention heads;

- Main Limitations:

- **Future Work:**



Faculty of EEMCS Delft University of Technology The Netherlands

Attention Type	Baseline	GQA	KQV	GQA	KQV	GQA	KQV	GQA	KQV
Group Proportio	n –	0.75	_	0.5	_	0.25	-	0.125	_
KQV Proportion	n –	-	0.75	-	0.5	-	0.25	-	0.125
FFN Width	1024	1120	1216	1216	1408	1312	1600	1360	1696
BLiMP	57.5%	55.8%	55.9%	56.7%	53.5%	55.4%	53.9%	56.0%	50.3%
GLUE/ SuperGLUE	61.6%	60.9%	60.4%	59.1%	60.5%	60.1%	56.6%	58.7%	56.1%
Average of BLiM and GLUE/ SuperGLUE	IP 59.55%	58.35%	58.15 %	57.9%	57.0%	57.75%	55.25%	57.35%	53.2%
-	= 16 136.67	225.66	135.19	212.16	133.51	176.69	134.44	158.22	134.15
per Token Generation (μ s) b =	512 17.31	14.32	11.82	11.90	7.48	10.42	6.47	9.31	5.99
Speedup Over b = the GPT-Neo	= 16 -	-39.44%	1.09%	-35.58%	2.36%	-22.65%	1.66%	-13.62%	1.87%
	- 512 –	20.92%	46.50%	45.54%	131.36%	66.23%	167.54%	85.96%	188.84%

Table 2: RQ2 - Full Speed and Quality Pair-wise Comparison of GQA and KQV Models Leading to an Equivalent KV-Cache Cut

Attention Type	MHA	GQA	MHA	GQA	MHA	GQA
Attention Heads	4	4	8	8	16	16
FFN width	1024	1120	1024	1120	1024	1120
BLiMP	58.1%	56.8%	57.5 %	55.8%	54.1%	53.4%
GLUE/ SuperGLUE	61.2%	59.1%	61.6%	60.9%	59.5%	58.8%
Average of MP and GLUE/ SuperGLUE	59.65%	57.95%	59.55%	58.35%	56.8%	56.1%

able 1: RO1.2 - Performance of GOA Models with Fixed Group Proportion for Different Numbers of Attention Heads Next to Corresponding Baselines

Attention Type	GQA	COMBINED	KQV
Group Proportion	0.25	0.5	-
KQV Proportion	-	0.5	0.25
FFN width	1312	1504	1600
BLiMP	55.4%	54.5%	53.9%
GLUE/ SuperGLUE	60.1%	58.5%	56.6%
Average of BLiMP and GLUE/SuperGLUE	57.75%	56.5%	55.25%
Time per Token (μ s) (b = 16)	176.69	207.79	134.44
Time per Token (μ s) (b = 512)	10.42	9.01	6.47
Speedup ($b = 16$)	-22.65%	-34.23%	1.66%
Speedup ($b = 512$)	66.23%	92.12%	167.54%

able 3: RO3 - Performance of the Combined Approach Next to Individual Ones, resulting in the Equivalent Key-Value Cache Cut

Observations:

- Speed and quality have an inverse relation in GQA; with the large memory consumption, it becomes close to being linearly proportional;
- The more attention heads there is, the less GQA degrades the quality given the same group proportion;
- KQV models tend to be faster but of lower quality. With the lower group and KQV proportions, however, the difference in quality vanishes;
- The combined model's metrics lie in between those that use individual approaches.

• KQV models could be faster due to reducing the number of floating point operations or due to modified GQA overhead • The combined model could be a valid way to expand the range of options available for choosing the desired trade-offs.

Overhead induced by modified GQA;

• The models are trained on one epoch

• Addressing main limitations and trying to train on a better dataset and evaluate with other quality metrics; • Trying post-training optimization with various techniques.