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Methodology
Experimental Setup:

● Hardware: HP ZBook Power G10, Intel Core i7-13700H, 16GB RAM, 
Windows 11.

● Software: Python 3.9.18, GoogleDP (PyDP) 1.1.4, OpenDP 0.13.0, pandas, 
numpy.

Datasets:
● Type: Synthetic datasets with a single numerical column (values uniformly 

drawn from [-100.0, 100.0]).
● Sizes: Small (10k records), Medium (100k records), Large (1M records).

Queries & Mechanisms:
● Queries Tested: Differentially Private Count and Bounded Sum.
● Mechanism Analyzed: Laplace mechanism. (Note: Gaussian mechanism 

evaluation was deferred) [3].
Privacy Parameters:

● Epsilon (ϵ): Tested values from 0.1 (stronger privacy) to 3.0 (weaker 
privacy).

Evaluation Metrics:
● Performance: Average execution time (ms) over 100 runs.
● Scalability: How performance and utility change with dataset size.
● Utility: Mean Absolute Error (MAE) between noisy results and the true 

value.

Results
Performance (vs. Epsilon):
● Execution time was largely insensitive to changes in ϵ for both libraries.
● GoogleDP was consistently faster than OpenDP across all dataset sizes, 

with the performance gap widening significantly on the Large dataset.
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Introduction
Overview: The modern world relies on analyzing large, sensitive datasets, but 
this creates significant privacy risks. Simply removing names is insufficient, 
as re-identification through linkage attacks is a known threat [2]. Differential 
Privacy (DP)[1] has become a key method to guarantee privacy during data 
analysis.

Differential Privacy is a framework designed to enable useful data analysis 
while providing strong, mathematical privacy guarantees [1]. Its core 
principle is that the output of any analysis should not significantly change if a 
single individual's data is added to or removed from the dataset. This 
protection is achieved by adding carefully calibrated random noise to the true 
result of a query. The amount of noise is controlled by a privacy budget, 
epsilon (ϵ), which creates a fundamental trade-off: stronger privacy (lower ϵ) 
requires more noise, reducing the accuracy of the result.

Problem & Motivation: To put DP into practice, software libraries like 
Google's Differential Privacy Library and the OpenDP Library are essential. 
Although they aim to provide similar privacy guarantees, their internal 
implementations, performance, and utility can differ significantly. Because 
these libraries are actively developed, an up-to-date empirical comparison is 
needed to help practitioners choose the right tool. This study builds on prior 
work, such as Zhang et al [4]., by providing a focused benchmark on the 
latest library versions.
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Research Question
How do the Google Differential Privacy Library and the OpenDP Library 
compare in terms of computational performance, scalability, and the utility 
of their implemented Laplace and Gaussian mechanisms when applied to 
Count and Sum queries on structured datasets?
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Figure 1. Differential Privacy Diagram 
(Source: Wikimedia Commons)

Scalability of Performance:
● Both libraries showed expected increases in execution time with larger 

datasets, with performance scaling approximately linearly on a log-log 
scale.

● GoogleDP consistently maintains a significant performance advantage 
over OpenDP.

Figure 4. Performance (Time vs. Epsilon) for Count Query

Figure 5. Scalability of Performance for Sum Query

Utility (MAE vs. Epsilon):
● As expected, MAE decreased as ϵ increased for both libraries, showing the 

privacy-utility trade-off.
● For Count and Sum queries, OpenDP often provided similar or slightly 

lower MAE (better utility).

Conclusions and Future Work

Conclusions:
● For Laplace-based queries, GoogleDP offers a clear advantage in 

computational speed and scalability.
● OpenDP provides a competitive and, in some cases, a marginally better 

utility profile.
● The choice between libraries depends on whether the primary criterion is 

processing efficiency or achieving optimal utility for specific privacy 
configurations.

Limitations & Future Work:
● Limitation: This study was confined to the Laplace mechanism. A 

comparative analysis of the Gaussian mechanism was not completed due 
to implementation status in the tested GoogleDP version.

● Future Work: The essential next step is an empirical comparison of 
Gaussian mechanism implementations in both libraries. Further work 
could also include more query types, real-world datasets, and assessing 
new library releases.

Figure 6. Utility for Count Query


