
Author: Brendan Mesters
Supervisors: Cas van der Rest
Responsible Professor: Casper Bach Poulsen

The effect of EHOP on the writing of Program Analyzers

1. Background
Effect Handler Oriented Programming (EHOP)
- Seperation of concerns for side effects.
- Isolates application logic from side effect handeling.
- Effects: Interface denoting an effects capabilities.
- Effect handlers: Concrete implementation of effects functionality.
- Effectful functions: Function that requires certain effects.
 Figure 1 shows an effect, effectfull function and the handeler
for the effect.
 EHOP excells at creating customizable functions since the effect
handlers can be changed to change the functionality.

Figure 1: Example of effectfull code, implementing a
yield effect to print the given value to console [1]

Static code analysis
- Analyzes source code for errors and warnings.
- Traverses the abstract syntax tree of a program.
- There exist many different static code analyzers.
- Different analyzers often have similar or identical pieces of code.

2. Research Question
How does the EHOP programming paradigm

effect program Analysis Tools.

● Do the concepts present in EHOP translate well into
 Program analysis tools?

● Does EHOP allow for more code reuse then
 otherwise possible?

● How does the EHOP programming paradigm
 effect the readability of the code?

● How quickly can EHOP be picked up by someone
 with prior functional programming experience?

3. Methodology and process

During the project a type checker and an interpreter have been made in the EHOP language Koka [1] for the
toy language Mini-ML [2].
The written code also included data types to represent Mini-ML code, as well as an effect to handle accumilative
errors and warnings, and an effect to keep track of the scope during code analysis.
Various Mini-ML programs have been written as values within the main.kk file.
The research questions were answered by substantiated reasoning, using examples from the source code
where ever possible.

How quickly can EHOP be picked
up by someone with prior
functional programming experience?

Figure 2: The near identical Variable handler code for
the type checker and the interpreter

Do the concepts present in EHOP translate well into program analysis tools?

4. Results

Yes,
- Effect Handlers allow for high levels of
 code generalization
- Functionality can be shared between code
 analyzers. See Figure 2 for an example
 on identical code.
- Code analyzers use the same 'code
 skeleton' consisting of a large match
 case to traverse the abstract data
 tree of the program.

Does EHOP allow for more code
reuse then otherwise possible?
The answer to this sub-question is twofold.
- In Theory: Yes, EHOP can eliminate vast
 parts of duplicate code and allow for code
 sharing between different code analysis tools.
- In Practice: Koka does not seem ready for
 code which uses effect handlers on a highly
 abstracted level.
 This issue is, however, almost certainly a
 result of the fact that Koka is still a
 research language.

How does the EHOP programming para-
digm effect the readability of the code?

It depends,
- Simple programs are very similar to
 Functional programming and easy to
 write.
- It takes roughly 2 weeks to get familiar
 with EHOP.
- It takes roughly 4 weeks to understand
 effects and structure code around it.
- It will take multiple months to 'master' EHOP

Positively,
EHOP allows for functionality to be passed
trough function calls implicitly, this makes
the function calls less messy as they use
less arguments.

- Static Code Analyzers do benefit from EHOP
 as it can help to reduce duplicate code and
 visual clutter.
- The current EHOP languages are still quite
 young and are not yet ready to be used
 in production code.
- EHOP is a prommising new programming
 paradigm that can easily be picked up by
 anyone with functional programming
 experience.

5. Conclusion

6. Future Work
- Peer research into the clearity of
 EHOP code, and the understandability
 for non-ehop programmers.
- Research into the applicability of
 EHOP for other programs
- Extending this research to more
 different kinds of code analyzers.

1. https://koka-lang.github.io/koka/doc/index.html
2. G. Kahn, “Natural semantics,” STACS 87, pp. 22–39.

7. References

