The effect of EHOP on the writing of Program Analyzers

Author: Brendan Mesters TU Delft
Supervisors: Cas van der Rest

Responsible Professor: Casper Bach Poulsen

5. Conclusion

1. Background 3. Methodology and process

Effect Handler Oriented Programming (EHOP) | | _ |
- Seperation of concerns for side effects. "I:Dol;lrllr;gr]]gtzggperc;]’leiiti_aw::lg_(?ze]checker and an interpreter have been made in the EHOP language Koka [1] for the - Static Code Analyzers do benefit from EHOP
- Isolates application logic from side effect handeling. The written code also included data types to represent Mini-ML code, as well as an effect to handle accumilative as it can help to reduce dup|icate code and

- Effects: Interface denoting an effects capabilities.
- Effect handlers: Concrete implementation of effects functionality.
- Effectful functions: Function that requires certain effects.

Figure 1 shows an effect, effectfull function and the handeler

errors and warnings, and an effect to keep track of the scope during code analysis. . | clutt
Various Mini-ML programs have been written as values within the main.kk file. Visual Clutter.

The research questions were answered by substantiated reasoning, using examples from the source code - The current EHOP |anguages are still quite
for the effect where ever possible.
- | . o young and are not yet ready to be used
EHOP excells at creating customizable functions since the effect -)
handlers can be changed to change the functionality. N pl’OdUCtIOﬂ code.
- EHOP Is a prommising new programming
paradigm that can easily be picked up by
anyone with functional programming
// Traverse a list and yield the elements

fun traverse(xs : list<a>) : yield<a> () 4 n Resu ItS experlence'

checkec
/| A generator effect with one operation

effect yield<a>
fun yield(x : a) : ()

match xs
Cons(x,xx) -> { yield(x); traverse(xx) }] . \
Ni1 -> 0 Do the concepts present in EHOP translate well into program analysis tools?
fun main() : console () ‘QES,
with fun yield(i : int) - Effect Handlers allow for high levels of
println("yielded " ++ 1i.show) Code generalization

[1,2,3].traverse

Figure 1: Example of effectfull code, implementing a - Functionality can be shared between code

yield effect to print the given value to console [1] analyzers. See Figure 2 for an example
_ _ on identical code.
Static code analysis - Code analyzers use the same 'code
- Analyzes source code for errors and warnings. skeleton' consisting of a |arge match - Peer research into the clearity Of

- Traverses the abstract syntax tree of a program.
- There exist many different static code analyzers. case to traverse the abstract data

- Different analyzers often have similar or identical pieces of code. tree of the program.

Does EHOP allow for more code
reuse then otherwise possible?

The answer to this sub-question is twofold.
- In Theory: Yes, EHOP can eliminate vast
parts of duplicate code and allow for code
sharing between different code analysis tools.
- In Practice: Koka does not seem ready for

EHOP code, and the understandability
for non-ehop programmers.

- Research into the applicability of
EHOP for other programs

- Extending this research to more
different kinds of code analyzers.

2. Research Question

How does the EHOP programming paradigm code which uses effect handlers on a highly “Figure 2: Thenar identical Variable handler code for
effect program Analysis Tools. abstracted level. the type checker and the interpreter
This issue is, however, almost certainly a How quickly can EHOP be picked
® Do the concepts present in EHOP translate well into result OI\tIhe fact that Koka is still a up by someone with prior
i ? research language. . . .
Program analysis tools: JHad functional programming experience? 7 . REfe re n C e S
_ It depends,
° gfhe;rvililzppgggivt\)llgr more code reuse then How does the EHOP programming para- . simple programs are very similar to
' digm effect the readability of the code? Functional programming and easy to
, , iti ite. 1. https://koka-lang.github.io/koka/doc/index.html
@® How does the EHOP programming paradigm Positively, W .) e
effect the readab”itypofgthe COde% Paradiy EHOP allows for functionality to be passed - It takes roughly 2 weeks to get familiar 2. G. Kahn, “Natural semantics,” STACS 87, pp. 22-39.
trough function calls implicitly, this makes with EHOP.
® How quickly can EHOP be picked up by someone the function calls less messy as they use - It takes roughly 4 weeks to understand
less arguments. effects and structure code around it.

with prior functional programming experience? . .
priortuhctionat prog g9 &xp - It will take multiple months to 'master' EHOP

