
Reinforcement Learning (RL) trains agents
to make decisions in uncertain sequential
environments by interacting with them
Deep RL methods like DQN and PPO
perform well but lack interpretability, which
is crucial in fields like healthcare
Decision trees offer transparent policies
but are hard to optimize in RL due to their
non-differentiability [1, 2]
DTPO enables direct optimization of
decision trees and shows promising results,
but only for discrete actions [3]

1 - Introduction

Can DTPO be extended to support continuous
action spaces and remain competitive with
neural network policies in terms of performance?

2 - Research Question

Discretization Impact on DTPO Performance
Use the Pendulum-v1 continuous
environment
Convert the action space into uniformly
spaced action bins

Ranging from 2 - 64 actions
Evaluate how resolution affects performance

Extending DTPO for Continuous Actions
Introduce DTPO-c
Modify each leaf node to output mean and
standard deviation
During training:

Sample actions from a Gaussian
distribution N(μ, σ )2

During evaluation:
Use mean action for obtaining a
deterministic decision tree

Replace the discrete-action PPO loss
function with continuous log-probabilities [4]

Performance Comparison of DTPO-c with RPO
RPO is similar to PPO, but adds noise to the
action mean to encourage exploration
Same environment (Pendulum-v1), random
seeds, and reward metrics
Compare results in two dimensions:

Sample efficiency 
(return vs. timesteps)

Computational efficiency 
(return vs. runtime)

3 - Methodology

DTPO-c enables interpretable reinforcement learning in
continuous action spaces
Can achieve competitive performance with RPO, but
requires more timesteps and longer runtime

Trade-off between transparency and efficiency
Useful in safety-critical environments

Discretization study reveals:
More discrete actions do not necessarily yield better
performance
Performance depends on model capacity

5 - Conclusion
Test DTPO-c on complex environments like HalfCheetah
or Walker2d
Allow each leaf to learn its own variance for better state-
dependent exploration
Explore methods that reuse parts of previous trees to
boost sample efficiency
Explore non-uniform action bins for discrete DTPO

6 - Future Work

Interpretable Reinforcement
Learning for Continuous
Action Environments
Author
Misha Kaptein
m.z.kaptein@student.tudelft.nl

RQ1 - Discretization Impact on DTPO Performance

4 - Results

Responsible Professor
Anna Lukina

Supervisor
Daniël Vos

[1] A. Silva, I. D. J. Rodriguez, T. W. Killian, S. Son, and M. C. Gombolay, “Interpretable reinforcement
learning via differentiable decision trees,” CoRR, vol. abs/1903.09338, 2019.
[2] R. R. Paleja, Y. Niu, A. Silva, C. Ritchie, S. Choi, and M. C. Gombolay, “Learning interpretable,
high-performing policies for continuous control problems,” CoRR, vol. abs/2202.02352, 2022.
[3] D. Vos and S. Verwer, “Optimizing interpretable decision tree policies for reinforcement
learning,” CoRR,vol. abs/2408.11632, 2024. 
[4] C. M. Bishop, Pattern recognition and machine learning, 5th Edition. Information science and
statistics, Springer, 2007.

References

RQ2 - Extending DTPO for Continuous Actions
DTPO-c is successfully learned on Pendulum-v1, which shows
feasibility
Preserved interpretability with visualizable tree policies in a
continuous domain

Figure 1: Undiscounted return distribution for varying action resolutions
across 6 different seeds

Finer discretization does not necessarily lead to better
performance

Decision tree capacity
Odd-numbered values tend to perform better than nearby
even-numbered values on average
Possibly caused by the 0-action

No significant difference after testing

RQ1 - How does DTPO perform on discretized
continuous action spaces under varying action
resolutions?

RQ2 - How can DTPO be extended to directly
support continuous actions?

RQ3 - How does the extended DTPO with
continuous actions compare in performance and
runtime to RPO with neural networks?

RQ3 - Performance Comparison of DTPO-c with RPO

Figure 3: Average undiscounted return across 3 different seeds 
against the runtime of DTPO-c (orange) and RPO (blue)

Figure 2: An example of a decision tree outputted
by DTPO-c for the Pendulum-v1 environment

DTPO-c requires significantly more timesteps
(12.5 million) than RPO (350k) to reach a performance of
around -200
From runtime perspective, DTPO-c initially outperforms
RPO, but then RPO overtakes again
DTPO-c is computationally heavier per timestep, but
can match performance of RPO given sufficient training
time


