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Large language models (LLMs), particularly those based on 
deep learning techniques, such as transformer models [1], 
have shown significant promise in improving the accuracy 
and effectiveness of code completion. 



However, most models are only trained in one language or 
multiple very common languages at the same time. Thus, 
many of the plugins being developed, such as GitHub 
Copilot [2], will function best with popular languages such as 
Python or Java, but may struggle to operate on low-
resource languages such as Julia, Go, or Kotlin.



Furthermore, in the context of code completion tasks, the 
significance of common code structures (CCS) on the 
performance of LLMs remains an understudied aspect. Their 
presence might significantly impact the attention 
mechanism and the performance of code completion 
models.



This study aims to answer whether common code structures 
relate to the depth of the first correct completion (DoFCC) of 
the CodeParrot language model [3]. 






The CCS can be categorized into distinct groups, including 
control structures, functions, classes, objects, exceptions, 
data structures, and input/output (I/O) structures. To 
understand their implications, we divide our analysis into two 
parts: the tuned lens investigation and the attention 
investigation.



We are using a multi-language test bench comprising 
languages such as Python, Java, C++, Kotlin, Julia, and Go. 
Out of these, Kotlin is the only language CodeParrot was not 
trained on. Each dataset was extracted from The Stack 
dataset and contains 512 source code files. 



For the tuned lens investigation, we start by creating 
collections of the most CCS for each language. CodeParrot 
is then used to perform token completion, while the tuned-
lens method [4]  is applied to provide insights into the 
model's internal representations. The DoFCC is used as the 
evaluation metric, indicating the layer where the 
intermediate result aligns with the expected token. Lastly, 
various statistical techniques are utilized to quantify 
intermediate model results. 



In the attention investigation, we collect attention heads  for 
both common and uncommon code structures (UCS). 
Afterward, diverse statistical methods are employed to 
examine the aspect of null attention [5], which refers to 
attention heads where the first token receives at least half of 
the attention score. 



Finally, we ana�lyze the correlation between the results of 
the two investiga�tions, aiming to comprehend the overall 
impact and signifi�cance of these CCS and to understand the 
decision-making process of the model.









Figure 1
The mean and standard deviation of the 

DoFCC for CCS and UCS in Java

Figure 2
The mean and standard deviation of the 

DoFCC for CCS and UCS in Go

Figure 5

Figure 6
The mean and standard deviation of the DoFCC for 

print statements in C++

The mean and standard deviation of the DoFCC for 
print statements in Python

Figure 7
The frequency, mean, and standard deviation of null 

attention heads per layer and within each language, for 
both CCS and UCS 
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Our findings show that  the influence of the CCS on 
completion performance is apparent across all six 
languages, particularly in high-resource languages such 
as Java, Python, and C++, as can be seen in Figure 1. 



In low-resource languages, Go demonstrates remarkable 
performance comparable to Java, compensating for the 
scarcity of training data due to its minimalist syntax, as 
observed in Figure 2. Conversely, the influence of typical 
struc�tures is reduced in the context of Julia, as illustrated in 
Figure 3. Despite the lack of training data, Kotlin achieves 
similar results to Julia, due to its syntactic similarity to Java.



Additionally, maintaining  proper indentation and adhering 
to whitespace conventions leads to a higher completion 
accuracy. This is depicted in Figure 4, where common 
tokens such as “_return” or “_if” obtain a DoFCC of just one in 
Julia.



Moreover, Figure 5 showcases the consistent completion 
performance observed for print statements in Python. The 
pattern of consecutive CCS was observed across print 
statements in all languages. It emerges when clusters of 
CCS appear successively, leading to better predictions. This 
results in fluctuations in the DoFCC values, which can be 
seen at the beginning of print statements in C++, as depicted 
in Figure 6.



Both CCS and UCS achieved consistent and similar 
attention results for all languages. An important pattern 
can be seen in Figure 7, where the majority of null attention 
heads (NAHs) are found in the upper layers rather than the 
lower layers. This correlates with the average DoFCC for 
CCS and suggests that the NAHs in the final layers do not 
provide any relevant contextual information for the 
predictions.








     








 



In light of these findings, CCS demonstrate a considerable 
impact on CodeParrot’s completion performance for  both 
high- and low-resource languages due to their frequent 
occurrence, consistent syntax, clear semantics, and 
contextual clues.



Further,  both CCS and UCS illustrate similar attention 
results across all six languages. A robust correlation was 
identified between the DoFCC of CCS and the limited 
occurrence of NAHs in the network’s initial layers. Our 
observations indicated that most NAHs originating from 
the upper layers lack meaningful contextual information 
that contributes to the predictions. 



At the same time, this presents a promising avenue for 
future investigation. By studying these CCS in controlled 
environments, we can reinforce our observations and 
enhance the significance of our findings.




 

Figure 3
The mean and standard deviation of the 

DoFCC for CCS in Julia

Figure 4
Low outliers of CCS in Julia


