
A on the
of

on

 Study
Impact
Common Code
Structures
CodeParrot’s
Autocompletion
Performance

Razvan-Mihai Popescu

R.Popescu-3@student.tudelft.nl

Supervisors: Maliheh Izadi, Jonathan Katzy
Professor: Arie van Deursen

01 Introduction

02 Methodology

03 Results

04 Conclusion

Large language models (LLMs), particularly those based on
deep learning techniques, such as transformer models [1],
have shown significant promise in improving the accuracy
and effectiveness of code completion.

However, most models are only trained in one language or
multiple very common languages at the same time. Thus,
many of the plugins being developed, such as GitHub
Copilot [2], will function best with popular languages such as
Python or Java, but may struggle to operate on low-
resource languages such as Julia, Go, or Kotlin.

Furthermore, in the context of code completion tasks, the
significance of common code structures (CCS) on the
performance of LLMs remains an understudied aspect. Their
presence might significantly impact the attention
mechanism and the performance of code completion
models.

This study aims to answer whether common code structures
relate to the depth of the first correct completion (DoFCC) of
the CodeParrot language model [3].

The CCS can be categorized into distinct groups, including
control structures, functions, classes, objects, exceptions,
data structures, and input/output (I/O) structures. To
understand their implications, we divide our analysis into two
parts: the tuned lens investigation and the attention
investigation.

We are using a multi-language test bench comprising
languages such as Python, Java, C++, Kotlin, Julia, and Go.
Out of these, Kotlin is the only language CodeParrot was not
trained on. Each dataset was extracted from The Stack
dataset and contains 512 source code files.

For the tuned lens investigation, we start by creating
collections of the most CCS for each language. CodeParrot
is then used to perform token completion, while the tuned-
lens method [4] is applied to provide insights into the
model's internal representations. The DoFCC is used as the
evaluation metric, indicating the layer where the
intermediate result aligns with the expected token. Lastly,
various statistical techniques are utilized to quantify
intermediate model results.

In the attention investigation, we collect attention heads for
both common and uncommon code structures (UCS).
Afterward, diverse statistical methods are employed to
examine the aspect of null attention [5], which refers to
attention heads where the first token receives at least half of
the attention score.

Finally, we ana�lyze the correlation between the results of
the two investiga�tions, aiming to comprehend the overall
impact and signifi�cance of these CCS and to understand the
decision-making process of the model.

Figure 1
The mean and standard deviation of the

DoFCC for CCS and UCS in Java

Figure 2
The mean and standard deviation of the

DoFCC for CCS and UCS in Go

Figure 5

Figure 6
The mean and standard deviation of the DoFCC for

print statements in C++

The mean and standard deviation of the DoFCC for
print statements in Python

Figure 7
The frequency, mean, and standard deviation of null

attention heads per layer and within each language, for
both CCS and UCS

Related literature

[1] Vaswani et al. Attention is all you need. In Advances in Neural Information Processing Systems 30, pages 5998-6008, 2017

[2] Mark Chen et al. Evaluating large language models trained on code. ArXiv, abs/2107.03374, 2021

[3] Xu et al. A systematic evaluation of large language models of code. In Proceedings of the 6th ACM SIG�PLAN International Symposium on Machine
Program�ming, 2022

[4] Belrose et al. Eliciting latent predictions from transformers with the tuned lens. ArXiv, abs/2303.08112, 2023

[5] Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language model. In Proceedings of the 58th Annual Meeting of the
Associ�ation for Computational Linguistics: Student Research Workshop, pages 158-165, 2020

Our findings show that the influence of the CCS on
completion performance is apparent across all six
languages, particularly in high-resource languages such
as Java, Python, and C++, as can be seen in Figure 1.

In low-resource languages, Go demonstrates remarkable
performance comparable to Java, compensating for the
scarcity of training data due to its minimalist syntax, as
observed in Figure 2. Conversely, the influence of typical
struc�tures is reduced in the context of Julia, as illustrated in
Figure 3. Despite the lack of training data, Kotlin achieves
similar results to Julia, due to its syntactic similarity to Java.

Additionally, maintaining proper indentation and adhering
to whitespace conventions leads to a higher completion
accuracy. This is depicted in Figure 4, where common
tokens such as “_return” or “_if” obtain a DoFCC of just one in
Julia.

Moreover, Figure 5 showcases the consistent completion
performance observed for print statements in Python. The
pattern of consecutive CCS was observed across print
statements in all languages. It emerges when clusters of
CCS appear successively, leading to better predictions. This
results in fluctuations in the DoFCC values, which can be
seen at the beginning of print statements in C++, as depicted
in Figure 6.

Both CCS and UCS achieved consistent and similar
attention results for all languages. An important pattern
can be seen in Figure 7, where the majority of null attention
heads (NAHs) are found in the upper layers rather than the
lower layers. This correlates with the average DoFCC for
CCS and suggests that the NAHs in the final layers do not
provide any relevant contextual information for the
predictions.

In light of these findings, CCS demonstrate a considerable
impact on CodeParrot’s completion performance for both
high- and low-resource languages due to their frequent
occurrence, consistent syntax, clear semantics, and
contextual clues.

Further, both CCS and UCS illustrate similar attention
results across all six languages. A robust correlation was
identified between the DoFCC of CCS and the limited
occurrence of NAHs in the network’s initial layers. Our
observations indicated that most NAHs originating from
the upper layers lack meaningful contextual information
that contributes to the predictions.

At the same time, this presents a promising avenue for
future investigation. By studying these CCS in controlled
environments, we can reinforce our observations and
enhance the significance of our findings.

Figure 3
The mean and standard deviation of the

DoFCC for CCS in Julia

Figure 4
Low outliers of CCS in Julia

