
 [1] Annibale Panichella, Fitsum Meshesha Kifetew, andPaolo Tonella. Automated test
case generation as a many-objective optimisation problem with dynamic selection
ofthe targets. IEEE Transactions on Software Engineering,44(2):122–158, 2018

 [2] Particle Swarm Optimization (PSO) — pagmo 2.19.0 documentation. (n.d.). https://
esa.github.io/pagmo2/docs/cpp/algorithms/pso.htm

 [3]: Elsheikh, A.H., Abd Elaziz, M. Review on applications of particle swarm optimization
in solar energy systems. Int. J. Environ. Sci. Technol. 16, 1159–1170 (2019). https://
doi.org/10.1007/s13762-018-1970-x

References

 Movement of a particle [3]

Challenges with adapting for this research
 Represent branch coverage as optimization problem

 Adapt algorithm to multi-objective optimizatio
 Solutions are now tests instead of numbers

 Adapt particles position in the search-space

 Adapt movement of particle

 Adapt algorithm with DynaMOSA features

 Include preference selection in main routine

PSO

4) Method

 Particles moving through the search space [2]

 Control dependency graph [1] Example program [1]

 Dependency between conditional branches
 Preference criterion based on branch coverage and

approach level.

 often represents a
blockage for many developers who would prefer spending
their time implementing new features.

 uses evolutionary and
meta-heuristics algorithms to evolve a set of randomly
generated solutions in order to obtain a test-suite for the
input program.

 is a multi-objective genetic algorithm. It uses
non-dominated solutions and crowding distance as
parameters to select the parents for the next generation

 is an extension of NSGA-II developed
specifically for the automated test-case generation
domain. It uses 2 heuristics to evolve the test-cases:

Writing meaningful and efficient tests

Search based test generation

NSGA-II

DynaMOSA

1) Introduction

Is PSO a valid option for search-based test case generation
in the context of dynamically-typed languages?

Diego Viero

d.viero@student.tudelft.nl

Assistant professor: Annibale Panichella

Supervisors: Mitchell Olsthoorn, Dimitri Stallenberg

5) Results
The results were gathered using a benchmark consisting of
27 different files from 4 popular JavaScript projects. The set
of files served as a proper representation of different code
styles and syntax of the JavaScript language.

was used as the main metric to compare
the different algorithms.

The average coverage achieved by each algorithm is
 : 53.89
 : 54.87
 : 55.24%

Branch coverage

PSO
DynaPSO
DynaMOSA

6 20 1

0 23 4

Win# No Diff.# Lose

DynaMOSA vs DynaPSO

PSO vs DynaPSO

Particle Swarm Optimization is an evolutionary algorithm inspired by
the social behavior of bird flocks, which allows it to efficiently explore
the search space and find optimal solutions for complex optimization
problems.

The procedure behind PSO is the following
 Randomly generate N particles over the search space, each

particle represents a candidate solution for the problem

 Keep track of the best solution over all particles and the best
individual solution for each particle.

 Update each position iteratively until convergence.

3) Particle Swarm Optimization

This research focuses on evaluating two adaptations of PSO
developed specifically for search-based test generation

 : Adaptation without DynaMOSA features

 : Adaptation with DynaMOSA features.

PSO

DynaPSO

2) Research Question

RQ1:

RQ2:

How does DynaPSO perform compared to the default PSO
implementation?

How does DynaPSO perform compared to the original
DynaMOSA algorithm?

