
Efficient Program Synthesis via Anti-Unification
How do we use anti-unification to combine programs to act as a starting 

point for synthesis?

Author: Radu Nicolae
Supervisor: Reuben Gardos Reid 
Professor: Sebastijan Dumančić
Email: R.Nicolae@student.tudeflt.nl

Introduction

• Program synthesis is the automated process 
of creating a program based on user intent
[1] 

• Anti-unification is the problem of finding the 
most specific template (pattern) of two 
terms [2] 

• Traditional synthesizers use domain-
specific languages (DSLs) to guide the 
search process

• By enhancing the grammar that a DSL-based 
synthesizer utilizes, the search procedure 
could be streamlined

• To achieve this objective, we propose an 
approach, called Anti-unification Meta-
iterator, that uses anti-unification to 
introduce common patterns from programs 
into the DSL

Results

• We aim to evaluate the performance 
of this approach compared to the 
standalone search method it utilizes 

• Out of a total of 100 problems, this 
approach solved 49 problems, while 
the search method solved 43 by 
itself 

• Pruning the set of problems, we 
arrive at a set of 21 problems where 
at least one of the two methods 
found a solution and at least one 
common pattern was found through 
anti-unification

Figure 1: Plots illustrating the differences in enumerations between the Anti-unification 
Meta-iterator and the search method it utilizes, called BFSIterator. 

References

[1] Sumit Gulwani, Oleksandr Polozov, and Rishabh 
Singh. Program synthesis. Foundations and Trends 
in Programming Languages

[2] Peter E. Bulychev, Egor V. Kostylev, and Vladimir 
A. Zakharov. Anti-unification algorithms and their 
applications in program analysisFigure 2. Example iteration step in the process of enhancing the DSL of a synthesizer 

Conclusion
• The anti-unification algorithm achieves 

better results by solving more problems

• However, a big limiting factor to the 
performance of the algorithm is 
additions to the DSL that do not help the 
synthesizer find a solution

• One such example is the first problem 
in Figure 2 where the common pattern 
found prevents the Anti-unification 
Meta-iterator from finding a solution

• Future work could be done to prevent 
such harmful additions from being 
added to the DSL

Methodology

• Starting with a search method that iterates 
through the state space to generate 
program, we collect outputs that partially 
satisfy the user intent

• Using anti-unification, common patterns 
between the programs collected are found 
and a list of candidate additions to the DSL 
is created

• The list of common patterns is converted in 
new rules and introduced into the DSL

• The process is repeated until a program that 
fully satisfies the user intent is found

1

2

3

4

5


