Bug Buster: Enhancing Unit Tests using ChatGPT-3.5

Stefan Creasta (Creasta@student.tudelft.nl)

1. Background

- Testing is crucial for ensuring that the program
behaves as intended

- Achieving high mutation score can be difficult

- There have been certain Search-Based and Fuzz
Testing (SBFT) tools which have showed promising
results

- EvoSuite — based on evolutionary algorithms [1]
- LLMs have been used for various software ap-
plications, including test suites generation [2, 3]

2. Research Questions

Can LLMs be used to improve tests?

- To what extent can tests be improved using
ChatGPT-3.5, utilizing the static approach?

- To what extent can tests be improved using
ChatGPT-3.5, utilizing the dynamic approach?

- What is the most efficient number of prompts
that must be sent to ChatGPT-3.5 such that the
mutation score is maximized?

Extract source Extract mutation Generate first
Start]
- code and test suite score prompt

Compile and run Extract mutat!gln Generate
the test suite score or possible subsequent prompt
errors
T Yes

3. Methodology

ChatGPT-3.5

Initially extract mutation score from
original test suite

Create the first prompt by using the
classes, test cases and mutation score
Send the prompt to GPT-3.5

Extract the test suite from the response,
while storing its mutation score or if it
crashed

Create the subsequent prompt by
including the output of the suite

Send the new prompt to the LLM and
continue this iterative process until 9
total prompts have been sent

If a test suite received from GPT-3.5 got
errors, enumerate them in the next
prompt to allow the LLM to fix them

Be more explicit in results for better
results: “include the correct package”,
“provide the entire code”, “here are a list
of mutants that | would like you to focus
on” etc.

Number of
prompts sent <
threshold?

Overwrite
current test
cases

=
‘

Number of mutants detected

References:

Supervisors: Annibale Panichella, Mitchell Olsthoorn

4. Benchmark and Results

]
TU Delft

Extracted classes from Apache Commons library and SF110

Class | Number of lines | Initial mutation score | Total number of mutants | Manual written tests | SF110
ByteVector 294 15 138 v
Uuls 175 21 24 v v
BooleanComparator 190 35 24 v
CommandLine 198 41 32 v
Queue 232 38 34 v
Group 1 593 27 29 v
Group 2 462 29 38 v
Group 3 404 10 52 7

Number of mutants detected

20

15

10

(4]

(=]

-4

Isolated classes
Box Plot for the Number of Mutants Killed

Mean and Median number of crashes

saveatee

~N

Number of crashes

- N

o

w

&

w

Number of prompts sent

Classes with dependencies

Box Plot for the Number of Mutants Killed

0 2 4 6 8
Number of prompts sent

Mean and Median number of crashes

1 & Mean ©

e il

(o]
(o]

o

Number of crashes

—e— Mean PNy
-#- Median

o 1 2 3 4 5 6 7 8 9
Number of prompts sent

0 2 a 6 8
Number of prompts sent

[1] Jahangirova, Gunel, and Valerio Terragni. "SBFT tool competition 2023-Java test case generation track." 2023 IEEE/ACM International Workshop on Search-Based and Fuzz Testing (SBFT). IEEE, 2023.
[2] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo, and J. M. Zhang, “Large language models for software engineering: Survey andopen problems,” 2023
[3]J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software testing with large language models: Survey, landscape, and vision,” 2024

mailto:Creasta@student.tudelft.nl

