Bug Buster: Enhancing Unit Tests using ChatGPT-3.5

Stefan Creasta (Creasta@student.tudelft.nl)

Supervisors: Annibale Panichella, Mitchell Olsthoorn

Background

- Testing is crucial for ensuring that the program behaves as intended
- Achieving high mutation score can be difficult
- There have been certain Search-Based and Fuzz Testing (SBFT) tools which have showed promising results
- EvoSuite based on evolutionary algorithms [1]
- LLMs have been used for various software applications, including test suites generation [2, 3]

Research Questions

Can LLMs be used to improve tests?

- To what extent can tests be improved using ChatGPT-3.5, utilizing the static approach?
- To what extent can tests be improved using ChatGPT-3.5, utilizing the dynamic approach?
- What is the most efficient number of prompts that must be sent to ChatGPT-3.5 such that the mutation score is maximized?

Extract mutation

score

Extract mutation

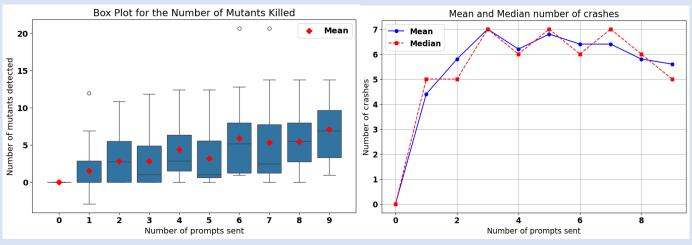
score or possible

errors

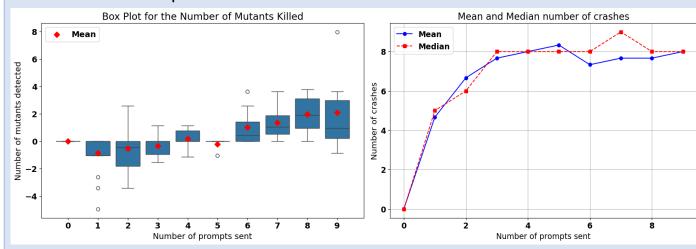
prompt

Generate

Methodology


- Initially extract mutation score from original test suite
- Create the first prompt by using the classes, test cases and mutation score
- Send the prompt to GPT-3.5
- Extract the test suite from the response, while storing its mutation score or if it crashed
- Create the subsequent prompt by including the output of the suite
- Send the new prompt to the LLM and continue this iterative process until 9 total prompts have been sent
- If a test suite received from GPT-3.5 got errors, enumerate them in the next prompt to allow the LLM to fix them
- Be more explicit in results for better results: "include the correct package", "provide the entire code", "here are a list of mutants that I would like you to focus on" etc.

4. Benchmark and Results


Extracted classes from Apache Commons library and SF110

Class	Number of lines	Initial mutation score	Total number of mutants	Manual written tests	SF110
ByteVector	294	15	138		√
Utils	175	21	24	√	√
BooleanComparator	190	35	24	√	
CommandLine	198	41	32		√
Queue	232	38	34		√
Group 1	593	27	29	√	
Group 2	462	29	38	✓	
Group 3	404	10	52	✓	,

Isolated classes

Classes with dependencies

Compile and run the test suite

Extract source

code and test suite

Generate first Number of Overwrite Stop prompts sent < current test threshold? ChatGPT-3.5 subsequent promp

References:

- [1] Jahangirova, Gunel, and Valerio Terragni. "SBFT tool competition 2023-Java test case generation track." 2023 IEEE/ACM International Workshop on Search-Based and Fuzz Testing (SBFT). IEEE, 2023.
- [2] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo, and J. M. Zhang, "Large language models for software engineering: Survey andopen problems," 2023
- [3] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, "Software testing with large language models: Survey, landscape, and vision," 2024