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Background

Deterministic Finite Automaton (DFA) learning is a problem of finding the smallest automaton

consistent with a given language sample. The problem is proven to be NP-hard. However, to

solve it, a heuristic called state merging [2] exists. It starts by constructing a structure called a

prefix tree acceptor. Then, nodes in the tree are iterativelymerged, aiming to produce the smallest

automaton consistent with the given language sample.
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(a) Initial prefix tree acceptor.
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(b) Automaton after the merge.

Figure 1. Example of performing a merge.

However, the order of merges is crucial because they introduce constraints on future merges.

One of the methods to order the merges is Evidence Driven State Merging (EDSM) [1]. It is a

proven and widely used method. To improve on this idea, we propose creating an ensemble of

models learned using the EDSM algorithm, where each model is learned on modified input data.

This change is made to introduce variety in the evidence computed by the algorithm and thus

providing variety and potentially better results.

Problem Description

Research questions:

What is an effective way to adjust sequence orders for different models in the ensemble?

What is a good metric for inter-model variety for DFAs?
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Figure 2. Visualization of the pipeline.

The main idea of the proposed approach is to consider some transformation of the input data (Fi
in figure 2) and learn a DFA from it using the EDSM algorithm. Then, pick the best-suited models

for an ensemble. To obtain predictions, apply the same transformation to the query and ask each

model. Accept the trace if the number of models accepting it is above some given threshold.

Contribution

To create an ensemble of DFAs, we proposed changing the sequence orders. The goal of modi-

fying the sequence order before running the EDSM algorithm is to highlight different aspects of

data and thus inject some variety into the models produced by it.

The first method that we propose is changing the reading direction from prefix to suffix (or vice

versa) after a fixed number of steps.
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Figure 3. An example reading order achieved with this method.

The second method that we propose is reversing the substring in the input data. The motivation

for this change comes from the fact that the part wewant to highlight can be located in the middle

of the trace.
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Figure 4. An example processing order achieved with this method.

Both methods apply the same transformation to all traces in the training data. Since certain

transformations may generate unreliable models, we use a validation set to pick a fixed number

of the best-performing models into the ensemble. However, multiple models may be similar to

each other. By similar, we mean they have languages that have a strong overlap.
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Figure 5. Languages of two automata and their intersection.

To mitigate this problem, we propose a random walk based similarity metric. It works by using a

random walk to sample from languages of both automata, and then it computes the intersection.

To add models into the ensemble, we again use the validation set, but we only add an automaton

if the ensemble does not contain a model with similarity greater than some fixed threshold.
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Results

The proposed approaches were evaluated on the dataset from the StaMinA competition [3]. They

were compared against a baseline of DFA learned using the EDSM algorithm starting with a prefix

tree acceptor.

(a) Reverse after k steps compared to the baseline. (b) Reverse substring methods compared to the baseline.

Figure 6. Results of the proposed approaches compared to the baseline on the StaMinA dataset.

Alphabet size 2 5 10 20 50 combined

Reverse after k steps +7 =2 -11 +6 =4 -10 +9 =3 -8 +10 =4 -6 +9 =3 -8 +41 =16 -43

Reverse substring +7 =2 -11 +9 =2 -9 +10 =0 -10 +13 =2 -5 +15 =1 -4 +54 =7 -39

Compression +6 =1 -13 +11 =0 -9 +13 =0 -7 +13 =0 -7 +14 =0 -6 +57 =1 -42

Table 1. The score distribution and RMS for the reverse after k steps method.

Figure 7. Sizes of the ensembles with and without using the similarity metric.

Conclusions

In the table 1 and figure 6, we can observe that the first proposed method was inconsistent, but

achieved improvement over the baseline in some cases. Both the complete and reduced substring

methods achieved worse results on smaller alphabet problems, but had substantial improvement

on harder problems. This shows that the ensemble constructed by manipulating the sequence

orders can be successfully used for DFA learning. However, further research is needed to explain

why the ensemble performs worse on certain test cases.
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