
Android API Number of
applications

BroadcastReceiver#onReceive 10

CallScreeningService#onScreenCall 6

InCallService#onCallAdded 5

Call$Callback#onStateChanged 4

PhoneStateListener#onCallStateChanged 4

ConnectionService#onCreateIncomingConnection 1

InCallService#onConnectionEvent 1

Table 1: Android APIs for intercepting calls

Android API Number of
applications

Call#reject 4

CallScreeningService#respondToCall 4

Call#disconnect 3

TelecomManager#endCall 1

Table 2: Android APIs for blocking calls

Android API Number of
applications

TelephonyManager#getSimCountryIso 3

TelephonyManager#getNetworkCountryIso 1

TelephonyManager#isNetworkRoaming 1

TelephonyManager#getNetworkOperatorName 1

SmsMessage#getMessageBody 1

Call$Details#getCallerNumberVerificationStatus 1

Call$Details#getHandlePresentation 1

Table 3: Other Android APIs found

Static Analysis of Spam Call Blocking Applications
Yoon Hwan Jeong - y.h.jeong@student.tudelft.nl
Supervisors: Dr. Apostolis Zarras and Dr. Yury Zhauniarovich

 4. Results 1. Background

 2. Methodology

 5. Conclusion

● Increase in scam calls lead to development of applications to
block those calls

● Some studies were conducted on their effectiveness
● Little is known in technical perspective

Research question:
What Android APIs are commonly used to intercept and
block calls?

1. Use AndroGuard1 to decompile DEX2 files
2. Extract methods from classes that extend Android classes in

android.telecom and android.telephony packages
3. Set methods that intercept calls as entry points of call graphs3

4. Build call graphs
5. Extract other Android APIs while traversing call graphs

1 https://github.com/androguard/androguard
2 Dalvik executable format, bytecodes that run on Dalvik VM used by Android
3 Directed graph where methods are vertices and edges represent calling relationships
between methods
4 https://developer.android.com/reference
5 Voice over Internet Protocol

 3. Limitations

● Extracted APIs are not guaranteed to be called at runtime
● Android APIs are provided at runtime so there are no traces of

Android APIs in DEX files
○ Android applications are developed by mainly implementing

callbacks
○ If Android APIs are not explicitly referenced, AndroGuard has

no information about them
○ Thus, it is hard to identify if methods are overridden or not

● Functionalities of APIs need to be manually checked from
Android API reference4

● BroadcastReceiver#onReceive can be used for different
purposes
○ AndroidManifest.xml needs to be inspected for its usage

● CallScreeningService manages both incoming and
outgoing calls while InCallService manages calls when a
device is in a call

● PhoneStateListener was deprecated in API level 31
● ConnectionService also manages VoIP5

● TelecomManager#endCall was deprecated in API level 29
● 3 applications require country of SIM

○ This could be a sign of different behaviour depending on
location

● 2 applications access SMS messages
● Call$Details#getCallerNumberVerificationStatus

uses STIR process described in ATIS-1000082 to verify a phone
number

 6. Future works

● Decompile Android runtime JAR to automate checking if a
method is overridden or not

● Explore other tools to build more accurate call graph with
callback awareness

● Perform taint analysis to check information leaks

