Author: Tudor Andrei

SCALING PROGRAM SYNTHESIS:
COMBINING PROGRAMS LEARNED ON SUBSETS OF EXAMPLES

Supervisor: Reuben Gardos Reid
Responsible Professor: Sebastijan Dumancic

1 INTRODUCTION

e Program synthesis aims to find programs that respect
some user-provided specifications. The problem of
synthesizing programs is undecidable [1], with the amount
of possible programs to search increasing exponentially
with the amount of lines.

Advancements in computing power, machine learning and
novel algorithms have made program synthesis viable in
different areas of CS such as code completion [2] and
super-optimization [3].

We examine problems where the solution needs to satisfy
the examples a user provides.

Specention Proggon
i y £) i® 2 &y then v else
2 3 3
4 -a r
5 5 5

2 BACKGROUND

In modern program synthesis, the user provides a grammar
from where a synthesiser produces programs.

One common method of solving PBE is an Enumerative Solver.
In its simplest form it incrementally produces programs from
the given grammar untill all examples are satisfied. Most of
these programs are really bad choices and should be pruned.
The enumerative solver is guaranteed to find the solution with
the smallest depth, which is usually preferred.

if (C) then T else T
lxly |l T+T
lcAaCl| -C

Q= wm
...li..
H o X

|
I 1
<T

Enumerative Solver

#x(gfﬁmydﬁx

T.Andrei@student.tudelft.nl

Terms are solutions to individual

RESEARCH QUESTION

(RQ) How do we combine individual programs learned on each
example to form a single program that works on many (all)
examples?

X == 1

* TERMS PREDICATES
examples + | = / \
o Predicates are the expressions in our X+ Y-x 0 X<y
grammar that evaluate to a boolean value.
1.There is a requirement that the “if construct”
is present in the grammar.
S

Solved problems

2.We produce terms for each input-output pair.
They need to collectively satisfy all examples.

3.We build a decision tree using predicates as
internal nodes and terms as leaves such that
if an input-output pair traverses the tree from
the root downwards, it will end in a term that
correctly solves it.

FALSE

4.We convert the decision tree to a valid
program using if statements.

24

22

20

18

3 METHODOLOGY

e The presented algorthim will be implemented into Herbjl, a
program synthesis package in Julia maintained by the PONY Lab at
TUDelft. In Herb, benchmarks from the SyGuS competition can be
used to experiment with the Divide and Conquer method.

e The divide and conquer algorithm will be compared with the
Enumerative Solver as the baseline. To evaluate one of the methods
on a problem we cannot simply use the full specification. Instead
we propose an evaluation scheme similar to the field of machine
learning. Assuming a problem has n examples, we give the solvers
0.9 - n] examples (randomly selected) to produce a program. To
evaluate their solution we run it on the full specification with n
examples.

4 DISCUSSION

00BFS D0 Divide and Conquer 0 0BFs [l I Divide and Conquer
24 24 256 258 258
]] 250]]]
22 o
z 200
=
2 150
="
E
19 19 £ 100
w
50
17 16 20 20
ol EEHL L L
10k 50k 100k 10k 50k 100k
Iterations Iterations
(a) SLIA (100 problems) (b) BV (317 problems)

Figure 1: Performance on two datasets of problems

Looking at the big difference over the two datasets we found that a
revealing factor may lie in the number of examples each problem has.
SLIA mostly has problems with less than 8 examples, while for the BV
dataset the number of examples is at least 10. This big discrepancy
might explain the difference in performance: The more examples a
problem has the harder it is for BFS to find a program that solves
them all. The divide and conquer method can generate the
necessary terms in much fewer iterations than BFS can find the
optimal program.

3 CONCLUSION

We found that the divide and conquer method of combining per
example solutions, does improve enumerative search, but it also
highly depends on it. If the enumerative search can’t solve any of
the examples, then neither the Divide and conquer method can.
This is a more limiting factor then actually combining the
programs into one, which turns out to be easier. However, our
implementation has the flexibility of being able to use any
method to solve the individual examples (stochastic search,
machine learning), which may vastly improve this procedure.

REFERENCES

[1] S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,”
vol. 4, no. 1-2, pp. 1-119, 2017.

and Trends in

Languages,

ion of partial exp ,” in PLDI'12,

[2] D. Perelman, S. Gulwani, T. Ball, and D. “Type-directed

June 11-16, 2012, Beijing, China, 6 2012.

[3] H. Massalin, “Superoptimizer - a look at the smallest program,” in Proceedings of the Second International
ConferencecnArchltecturalSupportforProgrammlng an
guages and Operating Systems (ASPLOS I1), (Palo Alto, California, USA), pp. 122-126, 10 1987.

