Non-Monotonicity in Empirical Learning Curves

Author: Codrin Socol (C.Socol@student.tudelft.nl)

1. Introduction

- Learning curves (LC) outline the evolution of model performance with respect to increasing the training set size.
- They can be used to extrapolate training time & costs of machine learning models.

Terminology:

- Curve monotonicity Adding more training samples will reduce the classifier error (Descending Curve)
- Anchor point on the learning curve that describes the relationship between training size and model error. [1]

Intuition indicates that learning is monotone. However, that may not always be the case:

2. Research Question

How many learning curves are nonmonotone and what influences this?

[1] Felix Mohr et al. "LCDB 1.0: An extensive learning curves database for classification tasks". In: Machine Learning and Knowledge Discovery in Databases (2023), pp. 3–19. doi: 10.1007/978-3-031-26419-1_1.

[2] Tom Viering and Marco Loog. The shape of learning curves: a review, 2022.

Poster template taken from *https://www.posternerd.com/sciposters-templates*

3. Methodology

- Create an algorithm that can identify nonmonotonicity in learning curves, by observing the **slopes** in the anchor points.
- 2. Evaluate the algorithm :
- Accuracy testing using artificial LCs;
- Ablation study to test whether 2 consecutive anchors should be considered to judge monotonicity;
- Peaking Test: how well does the metric handle sample-wise double descent [2];
- **3.** Using this metric, evaluate nonmonotonicity on a subset of the Learning Curve Database (LCDB) [1].

4. Results

 Table 1: Accuracy Test Results. The
age of correctly classified curves fro tonic or non-monotonic LCs, respect

	Actua
	Non-mone
Predicted	2140 (08
Non-monotonic	5140 (90.
Predicted	20 (1.2)
Monotonic	59 (1.25

Table 2: Ablation Study results. The brackets describe the increase/decrease compared to Experiment 1 Results from Table 1.

	Actual Non-monotonic	Actual Monotonic	
Predicted Non-monotonic	3166 (+0.82%)	224	
Predicted Monotonic	13	366 (-31.87%)	

Table 3: Metric evaluation on 590 artificial monotonic LCs with peaking at anchor index 5.

	Correctly classified	% of total
	as non-monotonic	curves (590)
Ablation Metric	267	45.25%
Initial Metric	19	3.22%

Identifying non-monotonicity through slope approximations on discrete points

Supervisor: Dr. Tom Viering (*T.J. Viering@tudelft.nl*) **Responsible Professor**: Dr. Jesse Krijthe (J.H.Krijthe@tudelft.nl)

5. Conclusions

- from a certain anchor point onwards;
- 2. Anchor slope approximation can be used to judge monotonicity of learning curves;

Future Work:

- parallelization and/or GPU computing;
- Evaluating the entire LCDB database.

e brackets describe the percent- om the total number of mono- ively.						
al	Actual					

- Monotonic otonic 36 (6.10%) .77%) 3%) 554 (**93.90%**)
- Algorithm correctly identified most artificial LCs generated;
 - We concluded that the metric has good potential of identifying real nonmonotonic curves.

- Using 1 anchor slope instead of 2 results in a **worse performance** for identifying monotonicity.
- The ablated algorithm tends to classify curves as non-monotonic at the **slightest** increase.

The metric is **not suitable to identify** peaking, if it only occurs at one anchor point.

- behavior at the very start of the curve;
- analyze from anchor 256.

. It is useful to consider monotonicity analysis

3. Some learners such as *LDA*, *QDA* experience more non-monotonic behavior compared to others, such as Extra Trees or Random Forest.

Algorithm optimization through LR alternative,

6. Limitations

- **1.** The introduced metric cannot identify *peaking* if it only occurs around **one anchor** point;
- 2. Curves that are almost constant may be **misclassified** due to approximation errors from training Linear Regression;
- **3.** Algorithm runs slowly, unfeasible for large scale analysis of many learning curves.

 Most classifiers tend to show non-monotonic • For LCs with **smallest training times**, around **60%** showed non-monotonic behavior when starting to

For fastest trained datasets, some classifiers may be inherently non-monotonic:

Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) showed most nonmonotonic behavior at all 3 starting anchors.

Extra Trees and Random Forest showed the least non-monotonic behavior.