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1. Introduction 3. Methodology 5. Conclusions 6. Limitations

Learning curves (LC) outline the evolution of model 1. Create an algorithm that can identify non- 1. itis useful to consider monotonicity analysis

. . . . : : : . The introduced metric cannot
erformance with respect to increasing the trainin SRTRE - F Jep— ; from a certain anchor point onwards; . . L
P P J J monotonicity in learning curves, by o identify peaking if it only occurs

set size. observing the slopes in the anchor points. . . -
They can be used to extrapolate training time & costs > I 2. Anchor slope approximation can be used to around one anchor point,

- : . _ ¢ judge monotonicity of learning curves;
of machine Iearnmg models. 2 Evaluate the alqorlthm - Retrain the classifier on that many - Curves that are almost constant

Terminology: - Accuracy testing using artificial LCs; training instances - o
» Curve monotonicity — Adding more training samples . Ablation study to test whether 2 v 3. Some learners such as LDA, QDA experience may be misclassified due to

. e . With the errors, train a Linear _ - - approximation errors from
will reduce the classifier error (Descending Curve) consecutive anchors should be considered | Regression model to estimate the more non-monotonic behavior compared to

. . . training Linear Regression;
Anchor — point on the learning curve that describes to judge monotonicity: il e others, such as Extra Trees or Random Forest. J J

the relationship between training size and model « Peaking Test: how well does the metric v

Repeat the process with different

error. [1] handle sample-wise double descent [2]; A6 Sl A s

3. Using this metric, evaluate non- v
Intuition indicates that learning is monotone. However, monotonicity on a subset of the Learning if mean slopes at 2 consecutive

that may not always be the case: Curve Database (LCDB) [1]. P bidercs nommonotonts, * Evaluating the entire LCDB database.

Training Error Rate of
sklearn.linear model.SGDClassifier on openmlid 723 dataset

Future Work: . Algorithm runs slowly, unfeasible

» Algorithm optimization through LR alternative, for Ia-rge scale analysis of many
parallelization and/or GPU computing; learning curves.

4. Results

o
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. . Monotonicity of 500 learning curves
Table 1: Accuracy Test Results. The brackets describe the percent- using different anchor points as start of analysis

oo nonmonotone LCo repecmey. o Algorithm correctly identified most | e
— Ao artificial LCs generated;

Non-monotonic Monotonic We COnCIUded that the metriC haS gOOd

HRORT | 2008 1 potential of identifying real non-

monotonic curves.

pam LC is Monotonic
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Prediction Error Rate

Most classifiers tend to show non-monotonic
behavior at the very start of the curve;
For LCs with smallest training times, around 60%
. . . — . . showed non-monotonic behavior when starting to
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Predicted
Non-monotonic

—_ Perfunnan.ce on Training Data PfediCteC.l 39 (1.23%) 554 (93.90%)
® Anchor point Monotonic
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Number of Learning Curves
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. . . First anchor: 16 First anchor: 64 First anchor: 256
Table 2: Ablation Study results. The brackets describe the in-

: crease/decrease compared to Experiment 1 Results from Table 1. ° USIﬂg 1 anChOr Slope InStead Of 2 results

A | A | - . - onotonicity Evaluation per learner . -
2. Research QueSthn Nopotud | i in a worse performance for identifying using different anchor points ac start of analysis For fastest trained datasets, some classifiers may be
Predicted mmm Non-Monotonic First Anchor: 16

Nowmonotnic | $1900487%) | 24| - monotonicity | = Wt ... | INherently non-monotonic:
bredicted 13 366 (-31.87%) | * The ablated algorithm tends to classify

I Monotonic First Anchor: 64
Monotonic

How many learning curves are non- curves as non-monotonic at the slightest = ot st Anchor. 259
monotone and what influences this? Increase.
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Linear Discriminant Analysis (LDA) and Quadratic
Discriminant Analysis (QDA) showed most non-
monotonic behavior at all 3 starting anchors.

Number of Learning Curves

Table 3: Metric evaluation on 590 artificial monotonic LCs with

peaking at anchor index 5. . Th t . t t bI t d tf
- . € metrc IS not suitable 1o fdentity Extra Trees and Random Forest showed the least
orrectly classified % of total
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