
1 2

3

4

5 6

Analyzing the Criticality of NPM
Packages Through a Time-

Dependent
Dependency Graph

Author
Anna Brands

Supervisors
Georgios Gousios, Diomidis Spinellis

Background Research Questions
Using other (open-source) packages as building blocks
potentially leads to a large number of transitive
dependencies.
Packages that are massively (transitively) depended
upon can be quite vulnerable. Some examples: left-
pad, and Log4Shell [1],[2].
Contemporary research has not yet taken into
account the time dimension.

References [1] Schlueter, I. (2016, March 23). npm Blog Archive: kik, left-pad, and npm. NPM Blog. https://blog.npmjs.org/post/141577284765/kik-left-
pad-and-npm

[2] Povolny, S., & McKee, D. (2021, December 10). Log4Shell Vulnerability is the Coal in our Stocking for 2021. McAfee Blog.
https://www.mcafee.com/blogs/enterprise/mcafee-enterprise-atr/log4shell-vulnerability-is-the-coal-in-our-stocking-for-2021/

RQ1: "What should a graph data structure
modeling package dependencies look like?"
RQ2: "On average, does the introduction of the
time dimension lead to a significant change in
the number of dependent packages per
package?"
RQ3: "What are the most-critical packages on
NPM?"

 (taking into account the time dimension)

Methodology

Results

Conclusion Limitations & Future Work

Designing time-
based

dependency
graph

Gathering &
processing NPM

package
Metadata

Graph data
structure

implementation

Graph data
structure

verification
(automated

tests)

Querying the
data structure

for results

Accuracy scores for random sample (RQ1)

Accuracy score formula (RQ1)

2019, 2021 PageRank vs. number of transitive dependencies (RQ2)

Relation between PageRank and download count over time (vertical:
download count; horizontal: normalized PageRank) (RQ3)

(Pearson coefficient of -0.245)

Time-based graph approach to exploring package
dependency networks looks promising
babel packages seem to be very important to the NPM
dependency network
Seemingly no positive correlation between package
download count and criticality (measured by
PageRank)

Graph generation takes a lot of memory (100k packages take +/- 40GB) -> Make
graph generation more memory-efficient before continuing analysis.
NPM graph was too large to fit into memory leading to incomplete results -> First
verify that the time-based graph works for all packages before proceeding.
Time constraints caused only PageRank to be considered -> use other metrics in the
future
Analyse package managers other than Maven, NPM, PyPI and the debian package
manager

