Pattern-based pose estimation for Tactile Internet

Background

- Tactile internet involves long-distance physical interaction over the internet, while requiring ultra low latency for natural and controllable interaction. This limits the distance over which can be operated.
- To overcome this, the controlled domain is observed and streamed to the master domain, and a simulation of the controlled domain is operated on instead.

Figure 1: Overview of the Tactile Internet. This research focused on the "observer" part of the system. Illustration by Kees Kroep.

- To accurately stream the workspace to the master domain, objects in it must be precisely tracked. This can be done with several technologies.
- Opting for conventional RGB cameras might allow for accurate and very cost-effective pose estimation.
- Tracking of objects can be done through pose estimation, specifically through finding patterns in images using a Perspective-n-Point algorithm solver.

Method

- Set up Unity testbed with a programmable camera and checkerboard pattern of known dimensions, in 1:1 real-world scale.
- Find camera parameters using Zhang's method camera calibration.
- Take pictures of the checkerboard in various poses.
- · Record ground truth of the poses.
- Send the pictures to a Python Flask server running the pose estimation algorithm.
- Estimate objects' pose by solving PnP with 3D-2D point correspondences.
- · Calculate deviation of the estimated poses from ground truth.

Results

- <0.1 mm accuracy in position, however with some Z-axis error spikes. The origin of these errors is not clear, but might have to do with aliasing in the camera picture.
- Pitch and roll highly accurate between -45° and 45°, no pose detected beyond ±60°.
- Yaw highly accurate between -90° and 90°, high spikes outside that range, when the checkerboard goes "upside down".
- Pose estimation algorithm operates at ~40 Hz.

Figure 3: The virtual test bed in Unity, showing the camera.

the checkerboard, and a preview of the camera's view.

Value

5 mm Intel i7-8750H @2.2GHz

 $24 \, \text{GB}$

Figure 4: Test setup parameters used.

 1920×108

ŤUDelft

Parameter

Square size

PC Proces

PCRAM

Research question

How can RGB cameras be used to do pose estimation on objects in a Tactile Internet workspace?

Figure 2: A checkerboard in the virtual test bed whose pose has been estimated and re-projected onto it as a Cartesian coordinate system. X-axis is shown in red, Y-axis in green and Z-axis in

Conclusion

- Checkerboard pattern recognition-based pose estimation proved to be effective in providing accurate position and rotation estimation.
- < 0.1 mm error attained in position estimation.
- <0.5° error for most angles, however variance spikes remain when the checkerboard is upside down.
- The virtual test bed allows for rapid prototyping and testing of further developments.

Future work

distance to the camera increases

 ArUCo markers are probably the most practical implementation of pattern pose estimation, instead of checkerboards. This was a stretch goal that couldn't be attained in time.

(green and red respectively in Fig. 2).

- A multi-cam setup might be investigated to improve tracking accuracy through sensor fusion.
- Camera resolutions should also be researched, what is the relationship between estimation accuracy and resolution?

Figure 8: An Artifico marker

Marijn Craenen m.l.l.craenen@student.tudelft.nl

CSE3000 Research Project

Professor: Dr. Ranga Rao Venkatesha Prasad Supervisor: Kees Kroep