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01. Introduction

Continual learning trains models on a sequence of tasks.
A major challenge is catastrophic forgetting, where learning
new tasks causes a drop in performance on earlier ones.

A sharper, short-term version of this is the stability gap,
which appears immediately after switching tasks (shown in
Figure 1 below).

This occurs even with methods like Experience Replay (ER).
This study explores whether Layerwise Proximal Replay
can help reduce the stability gap.
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Figure 1: The Stability Gap as shown in [1].

02. Layerwise Proximal Replay (LPR)

Introduced by Yoo et al. (2024) as a stability-focused
continual learning method [2].

Uses replayed data to estimate how each layer responds to
inputs.

Computes a per-layer pre-conditioner matrix to guide
gradient updates.

Encourages weight changes that preserve useful internal
representations.

Operates entirely at the layer level, without modifying the
overall architecture.

Parameter w dictates strength of the regularisation.
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Table 1

Mind the Gap: Layerwise Proximal
Replay for Stable Continual Learning

Research Questions

Does LPR aid in mitigating the stability gap, and how does
changing w affect the results?
What is the relation between learning rate and w?

Methodology

We use Rotated MNIST as a continual learning benchmark
with three tasks, each defined by a fixed image rotation (0°,
80°, 160°).

A multi-layer perceptron is trained incrementally on all
tasks using full replay.

We then implement LPR on the same architecture.

Test accuracy on all tasks is tracked across training to
visualise and quantify the stability gap in both settings.
We test on learning rates = [0.01, 0.1, 0.5, 1] and w =[0.01,
0.1, 0.5, 1.0, 10.0]

Results

Results show that LPR stabilises the drops test accuracy
after after task switches. (Figure 2)

Compared to the baseline, LPR improves the most at higher
learning rates, up to 45 percentage points. (Table 1)
Higher values of w limit the plasticity of the model,
inhibiting learning on future tasks. (Table 2)

LPR achieves lower accuracy but also lower variance in final
task accuracy compared to the baseline. (Table 2)

: Best LPR configuration per learning Learning Rate Best w Mean Gap (%) SEM (%) Reduction (p.p.)

rate. Values reflect mean + SEM over 5 runs. 0.01 1.0 0.09 0.20 0.13
The last column reports the absolute 0.10 0.01 1.38 1.64 13.33
reduction in stability gap relative to the 0.50 0.01 0.65 0.55 47.47
baseline. Lower is better 1.00 0.01 0.63 0.61 45.74
LR Baseline w=0.01 w=0.1 w=05 w=1.0 w = 10.0 Table 2: Final test accuracy (%) across
001 71.66 + 0.16 60.05+ 0.19 50.31 + 0.15 47.64 + 0.12 46.90 + 0.27 44.44 + 0.26 learning rates for the baseline and LPR with
0.10 94.74 + 0.03 90.57 £ 0.05 86.76 £ 0.07 83.27 £ 0.07 81.29 +0.12 75.09 + 0.30 different w values. Values are reported as

0.50
1.00

96.51 £ 0.05 96.10 = 0.03 94.66 + 0.02 93.13 £ 0.07 92.69 £ 0.04 89.79 £+ 0.13
78.86 £ 15.46 96.26 + 0.15 94.58 £ 0.49 93.77 &£ 0.47 93.10 £ 0.39 89.36 £ 3.43

learning rate is bolded.

mean + SEM over 5 runs. Best result per
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Task 1 Accuracy Over Time (Baseline vs. LPR)
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Figure 2: Task 1 accuracy over time for the baseline (in red) and LPR variants (in shades of blue) at learning
rate n = 0.1. Lighter lines correspond to higher values of w. Dashed vertical lines indicate task transitions. Note
the y-axis starting at 70% accuracy and Task 1 dropping to below 70 after Task switch 3 (49.60%).

06. Conclusion

LPR consistently reduces the stability gap after task switches.
Benefits are most pronounced at higher learning rates, where
baseline training is unstable.

Low-to-moderate w values (0.01-0.1) achieve the best trade-off
between stability and adaptability.

High w reduces plasticity, leading to underfitting on new tasks
and lower overall performance.

LPR enables stable continual learning without requiring a
lower learning rate.

07. Future Work / Limitations

e Extend experiments to deeper architectures and more

complex continual learning benchmarks (e.g., class-

incremental scenarios).

o Explore adaptive or task-aware tuning of w, and optimise the

efficiency of preconditioner updates for online settings.

e Limitation: Simplified LPR settings
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