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Abstract

Graph Transformers have played a key role in the latest graph learning
developments. However their performance in Relational Deep Learn‐
ing remains largely unexplored. We propose adaptations to two Graph
Transformer models implementing local message passing and global at‐
tention and evaluate them on RelBench, a set of comprehensive RDL
benchmarks. We show that local message passing has a lower com‐
plexity, requiring less memory and training time, and outperforms global
attention. We demonstrate that our implementation can achieve state
of the art results on node classification and regression tasks.

Introduction

Graph Neural Networks learn meaningful representation and patterns
from graph‐structured data, and rely heavily on message passing (MP).
Graph Transformers were introduced as an extension, adapting the con‐
cept of attention to graphs [1]. Relational deep learning (RDL) aims to
learn data from tables in a database without doing a feature engineering
step, saving time and cost [2]. We implement FraudGT [3] for local MP
and Graphormer [4] for global attention to answer whether one outper‐
forms the other on RelBench [5] tasks?
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Figure 1. Graph Neural Network Architecture

Research Questions

How do runtime and memory usage differ between global and
local message‐passing transformers as graph size scales?
Does a global message‐passing scheme simulate or strictly
dominate the representational power of purely local
message‐passing in graph transformers?
On RelBench node classification benchmarks, which
message‐passing scheme achieves higher accuracy (ROC‐AUC)?
For RelBench graph‐scoring (regression) tasks, how do global and
local message‐passing architectures compare in terms of mean
absolute error (MAE)?

Background

Relational Deep Learning (RDL) represents databases as heterogeneous
graphs — rows as nodes, columns as features, and foreign key links as
edges. Graph learning method can then be used for predictive tasks.

Graph Transformers use different attention biases to learn the graph’s
structure and node positions. In each Transformer layer, multi‐head at‐
tention is performed.

Attention mechanisms can perform local attention, in which each node
attends only the nodes in its neighbourhood; or global attention, where
each node attends to every other node. Global models are obviously more
expensive than local message passing, with a layer complexity of O(n2),
since now every node has to attend every other node in the graph.
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Figure 2. Local and global attention mechanisms when computing attention between
two nodes. A (left) shows local message passing, B (right) is global attention.

Methodology

1. Design and adapt attention mechanisms and implement the
transformers (FraudGT for local message passing and Graphormer
for global message passing).

2. Evaluate models on 6 classification and 5 regression tasks from
RelBench.

3. Tune hyperparameters via Bayesian search.
4. For each task, run 5 train‐test loops with different random seeds.

Compute the average and standard deviation.
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Figure 1: RELBENCH enables training and evaluation of deep learning models on relational databases.
RELBENCH supports framework agnostic data loading, task specification, standardized data splitting,
standardized evaluation metrics, and a leaderboard for tracking progress. RELBENCH also includes a
pilot implementation of the relational deep learning blueprint of Fey et al. (2024).

levels of predictive power. However, the development of relational deep learning is limited by a
complete lack of infrastructure to support research, including: (i) standardized benchmark databases
and tasks to compare methods, (ii) initial implementation of RDL, including converting data to graph
form and GNN training, and (iii) a pilot study of the effectiveness of relational deep learning.

Here we present RELBENCH, the first benchmark for relational deep learning. RELBENCH is intended
to be the foundational infrastructure for future research into relational deep learning, providing a
comprehensive set of databases across a variety of domains, including e-commerce, Q&A platforms,
medical, and sports databases. RELBENCH databases span orders of magnitude in size, from 74K
entities to 41M entities, and have very different time spans, between 2 weeks and 55 years of training
data. They also vary significantly in their relational structure, with the total number of tables varying
between 3 and 15, and total number of columns varying from 15 to 140. Each database comes with
multiple predictive tasks, 30 in total, including entity classification/regression and recommendation
tasks, each chosen for their real-world significance.

In addition to databases and tasks, we release open-source software designed to make relational deep
learning widely available. This includes (i) the RELBENCH Python package for easy database and task
loading, (ii) the first open-source implementation of relational deep learning, designed to be easily
modified by researchers, and (iii) a public leaderboard for tracking progress. We comprehensively
benchmark our initial RDL implementation on all RELBENCH tasks, comparing to various baselines.

The most important baseline we compare to is a strong “data scientist” approach, for which we
recruited an experienced individual to solve each task by manually engineering features and feeding
them into tabular models. This approach is the current gold-standard for building predictive models
on relational databases. The study, which we open source for reproducibility, finds that RDL models
match or outperform the data scientist’s models in accuracy, whilst reducing human hours worked
by 96%, and lines of code by 94% on average. This cons14titutes the first empirical demonstration
of the central promise of RDL, and points to a long-awaited end-to-end deep learning solution for
relational data.

Our website2 is a comprehensive entry point to RDL, describing RELBENCH databases and tasks,
access to code on GitHub, the full relational deep learning blueprint, and tutorials for adding new
databases and tasks to RELBENCH to allow researchers to experiment with their problems of interest.

2 Overview and Design
RELBENCH provides a collection of diverse real-world relational databases along with a set of
realistic predictive tasks associated with each database. Concretely, we provide:

• Relational databases, consisting of a set of tables connected via primary-foreign key relation-
ships. Each table has columns storing diverse information about each entity. Some tables also
come with time columns, indicating the time at which the entity is created (e.g., transaction date).

• Predictive tasks over a relational database, which are defined by a training table (Fey et al.,
2024) with columns for Entity ID, seed time, and target labels.The seed time indicates at which
time the target is to be predicted, filtering future data.

Next we outline key design principles of RELBENCH with an emphasis on data curation, data splits,
research flexibility, and open-source implementation.

2https://relbench.stanford.edu.
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Figure 3. RelBench evaluation pipeline: starting from a relational database, loaders
prepare graph inputs for our custom models which are then evaluated.

Results and Discussion

We present a summary of results, which show that Local message pass‐
ing models like FraudGT can generally outperform GNN‐based Relational
Deep Learning implementations. Their relatively low complexity and
memory usage, as well as fast training times make it a good option for
a variety of scenarios.

Graph attention mechanisms cannot simulate the expressive power of
purely localmessage passing Transformers. Evenwith reduced batch sizes
and a limited number of neighbours, training global models demands the
maximum memory capacity of even the latest GPUs.

This forces training models with a smaller batch size; such that, when in‐
creased layer complexity is taken into account, training and inference times
are even slower.

Dataset / Task RDL Local MP Global Attn

F1 (driver‐top3) 75.54±0.63 82.99±0.87 76.67±2.80
HM (user‐churn) 69.88±0.21 70.30±0.30 67.49±0.03
Trial (study‐outcome) 68.60±1.01 69.28±0.32 67.42±0.59
Avito (user‐visits) 66.20±0.10 64.92±0.20 63.72±0.44

Table 1. Node classification results (ROC‐AUC, higher is better). Mean±SD over 5 runs;
best scores are in bold.

Dataset / Task RDL Local MP Global Attn

F1 (driver‐position) 4.022±0.119 3.925±0.062 4.025±0.085
HM (item‐sales) 0.056±0.000 0.052±0.003 0.076±0.000
Trial (site‐success) 0.400±0.020 0.376±0.024 0.450±0.013
Trial (study‐adverse) 44.473±0.209 43.439±0.771 47.271±0.802

Table 2. Node regression results (MAE, lower is better). Mean±SD over 5 runs; best
scores are bold.
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