
The proposed algorithm reinitializes the neurons
that yield the highest and lowest activation
scores by rescaling their weights by some
constant factor. To estimate a neuron’s
activation value, the following measurement
metric is introduced:

where is the utility score of the -th neuron
of layer , is the the activation output of
the -th hidden unit in layer at time t, and
xx represents a decay factor.
Let us denote by and the coefficients that
will be used for rescaling the weights of the low
and high utility score neurons. Additionally, let
x and denote the rates that will define
how often the neurons will be reinitialized. The
table measures the number of steps since
the last time that a neuron’s weights have been
rescaled, hence protecting the neurons from
being rescaled too often. Additionally, two
counters are introduced, which count the
number of neurons that should be reinitialized at
each timestep.

4.Algorithm Design 1.Introduction
Continual Learning (CL) - environment where a model learns sequentially from a stream of data,
updating its knowledge while aiming to retain previously learned information.
Plasticity Loss - the phenomenon where a models' ability to learn and adapt to new information
decreases over time, especially in CL scenarios.

Figure 1: Illustration of some of the problems faced by deep learning activation functions.

2.Background
Plasticity loss in deep learning can stem from a plethora of different factors, such as: the
objective landscape sharpness [1], shifts in the effective rank dynamics [2], issues like vanishing
gradients [3], and a high number of dormant/dead neurons [4].
Standard deep learning utensils, in particular feedforward artificial neural networks and the
backpropagation algorithm, fail to adapt to CL scenarios [5].
A category of strategies that address the loss of plasticity in CL selectively reinitializes the
weights of some neurons during the training process. For example, the Continual
Backpropagation [6] algorithm reinitalizes neurons based on a heuristic measure of utility,
assessing how valuable a neuron is to the network, and restricting the reinitialization to the
less-used neurons.
We design reinitialization approaches that leverage the intrinsic properties of the underlying
activation function of the network. Most families of activation functions suffer from a few
common problematic regions (see Figure 1). The lowest and highest activation values are
typically detrimental to the learning performance, particularly in CL contexts.

3.Problem Description
Supervised classification problem based on the MNIST dataset [1].
The training process is divided into multiple tasks that are defined by the way the pixels
within the context of the original image’s shape are permuted (see Figure 2).
Base model: artificial neural network with 3 hidden layers and 100 neurons per layer.
The network is trained on a single pass through the data. For each data point, the network
estimates the probabilities of each of the 10 classes and performs stochastic gradient descent
on the cross-entropy loss.

Figure 2: The process of generating different input
configurations for each training task. Each particular
image of the dataset is altered according to a unique
random permutation.

6. Conclusions

References
This research introduced a framework which aims to maintain plasticity in CL, that
selectively reinitializes neurons that yield the highest and the lowest activation values of
the network, groups that are usually problematic in deep learning.
A custom utility measure that estimates the activation value of each neuron was
proposed.
The strategy successfully mitigates loss of plasticity in simple supervised learning
scenarios when used on a ReLU and tanh-activated network.

5. Results

7. Future Work
Does the proposed strategy mitigate plasticity loss in more general scenarios, including
various supervised learning and deep reinforcement learning popular benchmarks?
Is the model able to generalize to various activation functions, such as SeLU, GeLU, and
others?
What is the rate at which the model forgets previously acquired knowledge when exposed
to new data distributions?

Author:
Victor Purice
v.purice@student.tudelft.nl

Supervisor:
Laurens Engwegen
l.r.engwegen@tudelft.nl

Responsible Professor:
Dr.Wendelin Böhmer
j.w.bohmer@tudelft.nl

Table 1: Values used for the grid searches to find the best set of hyperparameters for the proposed algorithm
tested on the permuted MNIST. The best-performing set of values for each activation strategy is in bold.

Figure 3: Online MNIST accuracy of models when applied to a ReLU-activated network and a tanh-activated
network. The results represent the average and standard deviation taken over 3 seeds for a running window of
size (n = 5).

The accuracy of the simple backpropagation model decreases with each subsequent task, which
showcases its lack of plasticity
The L2 framework maintains its plasticity in both scenarios, thus serving as a baseline for
preserving plasticity in CL.
The Continual Backpropagation algorithm maintains the plasticity of the network when the
hidden activation is ReLU, but loses plasticity when the hidden activation is tanh.
The designed ReLU strategy outperforms the other strategies, achieving a performance of (88.65
± 0.4%) (mean and std) across all tasks, compared to (86.23 ± 0.4%) of L2 regularisation and
(84.98 ± 0.7%) of tanh strategy when used on a ReLU-activated network.
The tanh strategy outperforms the other strategies, achieving a performance of (87.60 ± 0.32%)
compared to (86.45 ± 0.37%) of L2 regularisation and (84.12 ± 0.5%) of ReLU when used on a
tanh-activated network.
Even though the performance of the strategies decreases when used on the opposite activation
function scenario, the algorithms still preserve some plasticity of the model, as they perform
better than simple backpropagation.

[1]Clare Lyle et al. Understanding plasticity in neural networks. 2023. arXiv: 2303 . 01486 [cs.LG]. URL: https://arxiv.org/abs/2303.01486.
[2]Aviral Kumar et al. Implicit Under-Parameterization Inhibits Data-Efficient Deep Reinforcement Learning. 2021. arXiv: 2010.14498
[cs.LG]. URL: https://arxiv. org/abs/2010.14498.
[3]Zaheer Abbas et al. Loss of Plasticity in Continual Deep Reinforcement Learning. 2023. arXiv: 2303 . 07507 [cs.LG]. URL: https : / /
arxiv. org / abs / 2303 . 07507.
[4]Ghada Sokar et al. The Dormant Neuron Phenomenon in Deep Reinforcement Learning. 2023. arXiv: 2302. 12902 [cs.LG]. URL: https :
/ / arxiv. org / abs / 2302 . 12902.
[5] Shibhansh Dohare et al. “Loss of Plasticity in Deep Continual Learning”. In: Nature 632 (2024), pp. 768– 774.
[6]Liyuan Wang et al. A Comprehensive Survey of Continual Learning: Theory, Method and Application. 2024. arXiv: 2302.00487 [cs.LG].
URL: https://arxiv.org/ abs/2302.00487.

The formalised pseudo-code of the proposed algorithm is presented in Algorithm 1.
A hyperparameter search was performed for the coefficients of a ReLU-based strategy
corresponding to the model yielding the highest accuracy on a ReLU-activated network. Similarly,
the parameters selected for the tanh-based strategy were chosen based on their optimal performance
on a tanh-activated network.

Maintaining Plasticity for Deep Continual Learning
Activation Function-Adapted Parameter Resetting Approaches

