

1.Collaborative filtering

User-based graph regularisers

Research question: How the Tikhonov regulariser performs for user-based KNN collaborative filtering. Additional research question: How the Sobolev regulariser performs for user-based KNN collaborative filtering

3

What:

Predicting ratings based on ratings of similar users. How:

Taking the weighted average of the ratings of the most similar users

5

7

2

3. MovieLens to Graph

Represent a user as node The similarity between users are the edge weights The ratings are represented as the graph signal

6

2. Similarity measure

Pearson correlation to meause the linear correlation between two users. Based on the movies they both rated.

5. Sobolev regulariser

 $\hat{\mathbf{X}} = \left(\mathbf{I} + \mu (\mathbf{L} + \epsilon \mathbf{I})^{\beta}\right)^{-1} \mathbf{Y}$

The results show the same trends as Tikhonov. That is the variations between the different parameter sets on the different metrics are very small.

7. Conclusion 1 2 3 4 5 ★☆☆☆☆ ★★★☆☆ ★★★☆☆ ★★★★☆

RMSE range Collaborative filtering Tikhonov Sobolev

With RMSE of 1 on a scale of 1 to 5 and all the algorithms have almost identical results. It is a indication that the underlying assumption that the pearson correlation as similarity measure is usefull for prediction user ratings might not hold true for this data set

(y	lins uala sel
ŤU	Delft
Sérénic M	lonté

6. Comparison

4

Overview of the best performance for each algorithm for the different metrics.

	RMSE	Recall@5	Recall@10	Recall@20	Precision@5	Precision@10	Precision@20	NDCG@5	NDCG@10	NDCG@20
\mathbf{CF}	1.092	0.521	0.715	0.864	0.640	0.692	0.593	0.914	0.892	0.932
Tikhonov	1.020	0.516	0.711	0.861	0.682	0.636	0.593	0.885	0.908	0.928
Sobolev	1.021	0.517	0.711	0.864	0.684	0.635	0.593	0.884	0.907	0.928
	1									

user a 0.6 user e 0.7 user b	A =	$ \begin{bmatrix} 0 \\ 0.6 \\ 0.7 \\ 0 \\ 0 \\ 0 $	$0.6 \\ 0 \\ 0 \\ 0.9 \\ 0$	$0.7 \\ 0 \\ 0 \\ 0 \\ 0.8$	$\begin{array}{c} 0 \\ 0.9 \\ 0 \\ 0 \\ 0.5 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0.8 \\ 0.5 \\ 0 \end{array}$	
0.5 0.8 0.9 User d user c	D =	$egin{array}{c} 1.3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1.5 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1.5 \\ 0 \\ 0 \end{array}$	${0 \\ 0 \\ 0 \\ 1.4 \\ 0 }$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1.3 \end{array}$	

4. Tikhonov regulariser

$$\hat{\mathbf{X}} = \left(\mathbf{I} + \mu \mathbf{L}
ight)^{-1} \mathbf{Y}$$

The results for the different metrics for the Tikhonov regulariser are almost identical. The graphs show a nearly straight line. RMSE

Zoomed in we see some minor variation