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1 – Background
• Mechanical ventilation in the ICU has a 

positive end-expiratory pressure (PEEP) 
setting

• Unknown if a high vs low PEEP regime is 
more beneficial [1]

• Randomised Control Test not always viable 
so confounding features that influence 
treatment and outcome occur in data

• Try to determine the Conditional Average 
Treatment Effect (CATE) (formula 1)

• CATE estimators help understand treatment 
effects on specific populations, considering 
individual characteristics

How can Causal Multi-task Gaussian Process be 
used to estimate the individualized treatment 
effect of a low vs high PEEP regime on ICU 
patients?

2 – Method
Implement CATE estimators:
• Meta Learners: S and T [2]
• Causal Multi -task Gaussian Process [3]
• S and T Learner with Gradient Boosting and 

Gaussian Process Regression as base learners
• Gaussian Processes with a simplistic Radial 

Basis Function Kernel

• Validate estimators using simulated data
• Perform CATE estimation on real -world ICU 

patient data, MIMIC-IV [4] and external RCT 
dataset

• Preprocess dataset with imputing and 
normalization

• Identify possible confounding features
• Performance measured using Cumulative 

Gain Curve, where Larger area indicates 
better performance

3 – Results

4 – Conclusions
• Significant execution time degradation for 

CATE estimators using Gaussian Processes
• CMGP and S-Learners perform equally well. 

T-Learners perform the worst
• Cumulative gain curves for MIMIC-IV and RCT 

dataset give different conclusions. Overall 
conclusion is therefore inconclusive and 
requires further research

5 – Future Work
• More robust research into possible 

confounders
• Analyse more complex kernels for Gaussian 

Processes
• Investigate Sparse Gaussian Processes to 

combat execution time degradation

Formula 1: CATE formula 
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Fig 1. Mean MSE - simulation Fig 3. T-Learner LGBMR - MIMIC-IV Fig 5. S-Learner LGBMR - MIMIC-IV Fig 7. CMGP - MIMIC-IV

Fig 4. T-Learner GPR - MIMIC-IV Fig 6. S-Learner LGBMR - MIMIC-IV Fig 8. Gain Curves - RCT datasetFig 2. Mean execution time - simulation
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