Research Questions

Practical Verification of the Inductive Graph Library

Haskell to Agda

7 /Y

agda2hs

What preconditions does the library require?

What are the properties and invariants of the library?

Is it possible and feasible to state and proof the properties of the
library?

Does the library fall within the common subset identified by
agda2hs?

context :: (Graph gr) => gr a b -> Node -> Context a b
context g v = fromMaybe (error (show v)) (fst (match v g))

¥

context : { _ : Graph gr } -> (grab : gr a b) -> (n : Node) ->
{ IsTrue (isJust (fst (match n grab))) } -> Context a b
context g v = fromJust (fst (match v g))

How to compile Agda code to Haskell with agda2hs?

Code must fall within the common subset identified by
agda2hs.

Add compile pragma: {-# COMPILE AGDA2HS context #-}
Run agda2hs.

Background Verification Process Preconditions Invariants
Practical Verification Haskell and Agda Abstract Properties AT Y e e ——"
specific node is contained in the duplicate nodes.
Verifying if a library works Haskell is a non-total functional How to proof properties of abstract functions that are required by graph. * Edges in the graph should only

correctly is usually done with
testing, however this approach is

incomplete. To know for sure
that a library works as intended,
its properties should be proved.

programming language. Agda is
very similar, but is a total and
dependently typed language, so
it can be used as a proof
assistant.

Inductive Graphs

The Inductive graph is defined as an abstract class. Inductive graphs can
be decomposed into parts as shown in the example below.

B

preconditions?
e Make the property part of the abstract class.
e Provide an instance of the abstract class.

e Proof the property using the implemented instance.

prop : (grab : gr a b) -> isEmpty grab = null (nodesList grab)

Nodes referenced by edge are reference nodes that are in the
contained in the graph. graph.

Conclusions

Abstract Properties Class

How to proof the properties of an abstract class?

e State all properties in an abstract properties class.
* Provide an instance of the abstract properties class.
* This checks if the properties are correctly stated.
* This proofs the properties and thus verifies the abstract class.

An instance of the graph is required to verify the Inductive Graph
Library.

The use of an abstract properties class cannot guarantee that the stated
properties are correct.

Formal verification is not feasible if the only goal is to verify the abstract
class.

The properties that are proven did not produce issues, but the
verification is not complete. So, no definitive conclusions can be made.
With some changes, the library falls within the common subset of
agda2hs.




