
Practical Verification of the Inductive Graph Library

Conclusions

Verifying if a library works 
correctly is usually done with 

testing, however this approach is 
incomplete. To know for sure 

that a library works as intended, 
its properties should be proved.

Background

Practical Verification Haskell and Agda Abstract Properties

Inductive Graphs

How to compile Agda code to Haskell with agda2hs?

• Code must fall within the common subset identified by 
agda2hs.

• Add compile pragma: {-# COMPILE AGDA2HS context #-}
• Run agda2hs.

Haskell to Agda

The Inductive graph is defined as an abstract class. Inductive graphs can 
be decomposed into parts as shown in the example below.

context :: (Graph gr) => gr a b ‐> Node ‐> Context a b
context g v = fromMaybe (error (show v)) (fst (match v g))

context : ⦃ _ : Graph gr ⦄ -> (grab : gr a b) -> (n : Node) ->
⦃ IsTrue (isJust (fst (match n grab))) ⦄ -> Context a b

context g v = fromJust (fst (match v g))

3

How to proof properties of abstract functions that are required by 
preconditions?

• Make the property part of the abstract class.
• Provide an instance of the abstract class.
• Proof the property using the implemented instance.

prop : (grab : gr a b) -> isEmpty grab ≡ null (nodesList grab)

How to proof the properties of an abstract class?

• State all properties in an abstract properties class.
• Provide an instance of the abstract properties class.

• This checks if the properties are correctly stated.
• This proofs the properties and thus verifies the abstract class.

• An instance of the graph is required to verify the Inductive Graph 
Library.

• The use of an abstract properties class cannot guarantee that the stated 
properties are correct.

• Formal verification is not feasible if the only goal is to verify the abstract 
class.

• The properties that are proven did not produce issues, but the 
verification is not complete. So, no definitive conclusions can be made.

• With some changes, the library falls within the common subset of 
agda2hs.

Abstract Properties Class

agda2hs

Preconditions Invariants 

• A graph should not contain 
duplicate nodes.

• Edges in the graph should only 
reference nodes that are in the 
graph.

• nonempty graph.
• specific node is contained in the 

graph.
• Nodes referenced by edge are 

contained in the graph.

5Research Questions

• What preconditions does the library require?
• What are the properties and invariants of the library?
• Is it possible and feasible to state and proof the properties of the 

library?
• Does the library fall within the common subset identified by 

agda2hs?

1

2

7

Verification Process
4 6

Researcher: Rico van Buren
r.p.g.vanburen@student.tudelft.nl

Supervisors: Jesper Cockx Lucas Escot
j.g.h.cockx@tudelft.nl l.f.b.escot@tudelft.nl

a b

dc

b

dc

a
match on 

 a 

Haskell is a non-total functional 
programming language. Agda is 
very similar, but is a total and 

dependently typed language, so 
it can be used as a proof 

assistant.


