
Tiny but Mighty: 
Distilling Large Language Models 
for Efficient Test Assertion Generation

Assertion generation is critical for reliable software testing.
Large LLMs like CodeT5+ are effective but too heavy for local use:
● Slow inference
● High memory usage
● Unsuitable for real-time IDE integration
Goal: Build smaller, faster models that still generate high-quality 
assertions.

Motivation

We aim to answer:
● How does student model size 

affect assertion quality?
● What are the trade-offs between 

quality, speed, and memory for 
local deployment?

● How do different distillation loss 
combinations affect 
performance?

Research Questions
1. Fine-tune CodeT5+ on Java test 

assertions (teacher model).
2. Generate logits + assertions from 

teacher.
3. Train smaller student models using:

● Teacher soft logits
● Teacher predictions (hard labels)
● Ground truth labels

4. Evaluate students across multiple 
quality + efficiency metrics.

Process
Author
Di Wu - d.wu-7@student.tudelft.nl

Supervisor & Responsible professor
Mitchell Olsthoorn, Annibale Panichella

Results Conclusions & Limitations
Conclusions:
1. Distilled a 220M model from CodeT5+ for 

local test assertion generation
2. Achieved ~78% CodeBLEU of the 

teacher at 3× faster inference, 40% less 
memory

3. Off-the-shelf models failed → distillation 
was crucial

4. Teacher hard labels alone gave best 
results

5. Smaller models produced more 
syntactically valid code

Limitations:
● Only tested on Java assertions
● Used 1 teacher model (CodeT5+)
● Stored only top-4 logits for KD (info 

loss)
● Did not evaluate runtime correctness 

(e.g., test execution)

Evaluation Metrics Across Student Model Variants

The CodeT5+ 220M student retained ~97% of the CodeBLEU score of a much larger 770M CodeT5+ 
student (0.453 vs. 0.465), both being distilled using the same teacher and strategy. Interestingly, 
smaller student models achieved higher AST validity, suggesting they generate simpler, more 
syntactically safe code.

Inference Speed and Memory Usage

The CodeT5+220M student model was nearly 3× 
faster per method and used ~41% less memory 
than the CodeT5+770M teacher. The smallest 
student model achieved a 6.7× speedup per 
method and reduced memory usage by ~46%.

Effect of Loss Weighting on Student Performance

Distillation was essential for learning (baseline F1 = 0.0). 
Surprisingly, using only the teacher’s hard predictions 
(‘Teacher 1.0’) performed best, likely because the 
dataset is simple and the small model benefits more 
from clear, direct supervision than soft logits.


