Application of Photogrammetry to Gaussian Splatting for mesh and texture reconstruction

K.J. Kiisa¹

¹Bsc. Computer Science & Engineering, TU Delft

Research Project Q4, 2024

1 Gaussian Splatting

- A recent breakthrough tool for generating novel-views of a scene from several photographs[2].
- It creates a point cloud of 3D gaussians that it then rescales, rotates and recolors using gradient descent to fit the original photographs.
- Downside, is that almost all available tools for 3D are designed for working with polygons and textures, and not Gaussians.
- These Gaussians need to be somehow transformed into a polygonal mesh and textures for use in modern workflows.

There are no methods so far to extract both the mesh and texture[3]

SuGaR can extract a mesh, but no texture data[1]. Texture-GS extracts a modifiable texture, but that texture only applies to Gaussians[5].

2 Photogrammetry

- A well-developed method for extracting a 3D model from photos of an object.
- Requires high-degree of overlap between images for best results [4].
- This research proposes the use of PG for extracting a 3D model from GS.

Research Question

"Is PG a viable method for extracting the polygonal 3D mesh and texture from a GS scene?"

3 Controlled Experiment

 Several 3D models were placed into a blender scene, and renders were taken of them from different angles.

- Renders used to train three GS scenes, one with 120 renders (120-GS), one with 60 renders (60-GS), and one with 30 (30-GS).
- 182 renders of the trained GS scenes were used in Photogrammetry to generate a model.
- 182 renders of the original model were also used in Photogrammetry (No-GS), for comparing the new method against.
- Quantitative measures were taken for quantitative analysis
- Visual inspection of lit and normal renders of final models was used for qualitative analysis.

Figure: Visualization of camera angles used for GS training images (left) and PG model generation input images (right).

4 Quantitative Results

Measure	No-GS	120-GS	60-GS	30-GS
ATL	3.766	3.630	3.538	3.102
MRE	0.319	0.366	0.386	0.411
%-RC	0.991	0.990	0.989	0.989
PSNR-L	40.136	39.841	39.747	39.452
PSNR-N	41.191	40.352	40.126	39.418

Table: The mean of each measure of each category across the 27 models included in the final results. Generally, the results worsen across all measures when comparing from No-GS, to 30-GS, to 60-GS, to 120-GS.

Measure	120-GS	60-GS	30-GS
ATL	0.333	0.105	2.351e-6
MRE	0.015	4.194e-3	3.831e-5
%-RC	0.077	0.032	2.588e-3
PSNR-L	0.522	0.406	0.161
PSNR-N	0.185	0.048	4.551e-3

Table: For each category, for each measure, p-value for difference to 'No-GS' model measures. Significant differences (p < 0.05) are marked with bold. In all such cases, No-GS has the better average quality for that measure.

Measure	120 vs. 60	120 vs. 30	60 vs. 30
ATL	0.491	4.965e-5	5.710e-4
MRE	0.228	8.993e-3	0.096
%-RC	0.654	0.081	0.161
PSNR-L	0.775	0.324	0.467
PSNR-N	0.494	0.069	0.172

Table: P-values for difference tests between GaussianSplatting based models. Significant differences(p < 0.05) are marked with bold.

5 Visual Results

Figure: Visual comparison of geometry and lit textured views of '120-GS', '60-GS', '30-GS', and 'No-GS' models respectively for the apple-1 input model.

Figure: Visual comparison of geometry of 'No-GS', '120-GS', '60-GS' and '30-GS' models respectively for the beauty-blender-1 input model.

6 Conclusions

- It is possible to generate a 3D model from Gaussian Splatting using Photogrammetry.
- Using GS causes a significant drop in at least one quality measure.
- Many models accurately recreated the original model with 120 and 60 GS training images, however GS with only 30 images introduces geometric errors.
- Visual errors much more prominent on models with featureless surfaces.
- In cases of minimal geometric deterioration, an accurate 3D model is able to be successfully created from Gaussian Splatting by using Photogrammetry.
- When GS based models produce accurate results, the amount of initial images can be reduced by 3 times before visual errors emerge.

References

- A. Guédon and V. Lepetit. SuGaR: Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering. arXiv:2311.12775 [cs]. Dec. 2023. DOI: 10.48550/arXiv.2311.12775
- [2] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. arXiv:2308.04079 [cs]. Aug. 2023. DOI: 10.48550/arXiv.2308.04079.
- [3] T. Wu, Y.-J. Yuan, L.-X. Zhang, J. Yang, Y.-P. Cao, L.-Q. Yan, and L. Gao. Recent Advances in 3D Gaussian Splatting. arXiv:2403.11134 [cs]. Apr. 2024. doi: 10.48550/arXiv.2403.11134.
- [4] H. S. Xie, I. Brilakis, and E. Loscos. "Reality Capture: Photography, Videos, Laser Scanning and Drones". en. In: Industry 4.0 for the Built Environment: Methodologies, Technologies and Skills. Ed. by M. Bolpagni, R. Gavina, and D. Ribeiro. Cham: Springer International Publishing, 2022, pp. 443–469. ISBN: 978-3-030-82430-3. DOI: 10.1007/978-3-030-82430-3_19.
- [5] T.-X. Xu, W. Hu, Y.-K. Lai, Y. Shan, and S.-H. Zhang. Texture-GS: Disentangling the Geometry and Texture for 3D Gaussian Splatting Editing. arXiv:2403.10050 [cs]. Mar. 2024. DOI: 10.48550/arXiv.2403.10050.