

Figure 1: Screenshot of "Holonomy" in Non-VR scene with old map

1) Introduction

- VR game (called "Holonomy") in 3x3m real world space, floor of the game world is hyperbolic
- VR game tries to illustrate Holonomy
- Figures 1 and 2 should give more of an idea
- Old implementation is too complex and not easy to extend with new features
- Old implementation is also too slow for continuous rendering of the world
- Map uses the Poincaré disk model
- Maps for hyperbolic space are difficult since size of tiles gets distorted

2) Research question

What is a simple and fast algorithm to render the hyperbolic plane and is suitable for the VR game "Holonomy"?

Figure 4: New rendering of the minimap (for 45 tiles)

Figure 5: Translated minimap

Mapping hyperbolic space for the virtual reality game "Holonomy"

3) Method

Circle Direction Direction Geodesic GeomUtil Holonomy Holonomy MainForm Step Mean Weighted Standard d Sum Old minin

- Can generate Euclidean tiling by drawing an origin tile, then reflecting that along its edges
- Again, we use the Poincaré disk model
- Tiling works similar in the Poincaré disk. Just need to concern ourselves with constructing an origin tile.
- Lines in the Poincaré disk are just circles [1]
- Circle inversion: OA*OA' = r^2 [2]
- To reflect, invert points in edges of tile
- Use the game graph (Figure 3) to not construct duplicate tiles
- Tiling translation: construct a hyperbolic middle line between origin of unit circle and new point. (Figure 5)

Figure 2: How hyperbolic geometry works in "Holonomy" (Image credit to Joris Rijsdijk)

[1] GOODMAN-STRAUSS, CHAIM. "Compass and Straightedge in the Poincaré Disk". The American Mathematical Monthly 108.1 (2001). Publisher: Mathematical Association of America, 38–49. ISSN: 0002-9890. DOI: 10.2307/2695674. URL: https://www.jstor.org/stable/2695674 [2] COXETER, H. S. M. "Inversive Geometry". Educational Studiesin Mathematics 3.3 (1971). Publisher: Springer, 310–321. ISSN: 0013-1954. URL: https://www.jstor.org/stable/3482030

	MI	CC	CO	LOSC	LOEC
	67	7	4	62	29
	91	1	0	13	2
Utils	80	10	2	39	4
	65	12	4	81	20
ls	63	16	4	200	76
yTile	69	18	19	182	37
yTiling	66	25	18	192	73
n	72	14	23	117	38
	91	1	0	11	2
	73.8	11.6	8.2		
mean	67.0	16.8	12.1		
deviation	10.3	7.4	8.5		
				897	281
nap	58	33	42	314	162

Table 1: Code metrics for new minimap against old minimap. MI=Maintainability index, CC= Cyclomatic complexity, CO=Class coupling, LOSC = Lines of source code, LOEC=Lines of executable code. Weighed mean is based on fraction of LOEC

Ate-Jan de Vries A.deVries-4@student.tudelft.nl

	Old minimap	New minimap	
Runtime of	17, 17, 19, 18,	25, 27, 26, 25,	
10 different	19, 18, 19, 17,	26, 25, 25, 25,	
executions	17, 18	27, 25	
Standard	0.83	0.80	
deviation	0.05		
Mean	17.9	25.6	

Table 2: Speed comparison of old against new minimap in milliseconds

4) Evaluation

- New minimap is a more faithful representation of hyperbolic space
- Code metrics computed for old and new minimaps. Both minimaps written in C#
- Lower cyclomatic complexity and coupling
- Slightly higher Maintainability index
- In general: new implementation is more organized. Thus, easier to extend.
- New minimap is slightly slower, it does not use a compute shader.
- Some minimap generation behaviour is not completely correct

5) Conclusions & Future work

- New minimap generation draws game world more faithfully than the old implementation
- New minimap is simpler and easier to extend with other features
- New minimap is slower, leaving significant possibilities for future work
- Further research in navigation: non-continuous map vs continuous map in user tests

Figure 6 New minimap generation process