TYPE-CHECKING MODULES AND
IMPORTS USING SCOPE GRAPHS

A Case Study on a Language with Relative, Unordered and Glob Import Semantics

]
TUDelft

Paul Hubner
p.m.hubner@student.tudelft.nl

Supervisors:
Dr. Casper Bach Poulsen, Aron
Zwaan

4. BACKGROUND (SCOPE GRAPHS)

Scope graphs contain nodes for particular scopes, joined by
directional edges. The scope graph of Listing 2 is Figure 2.

© Dwer®

(b) Edge

1. INTRODUCTION

e Type checking using
conventional methods
such as environments Is
elegant but often difficult
to apply to the real world

Core problem: you cannot add an import edge to a scope that has
already been queried for import edges (monotonicity violation)!

A @ 1I—Mﬁ>‘7hﬂ—-ﬂ a2

e LM is a proof-of-concept
language with interesting
module/import

properties Edge labels:

e V for variable sinks

(a) Scope

e For example due to e MiniStatix 1s a type- e M for module sinks p P
module systems [3] checker using scope e P for lexical parent @—v—ﬁx — @ y ﬁFm a1 B @ 3 I—M@ | 92 }vey : Int
e Scope graphs provide a graphs . » |forimports Variable sink) Module sink AN
formal definition for type e |ts |mplementat|0n of LM | (c) Variable sin (d) Mo UE.H“ B | / ”uar_ﬂ__:_:}:_:
checking does not always halt, e When type-checking, x needs - NAME_@ Figure 1: = s
. With them we hope o be when modules and to !:)e resolved | R Scope graph x : Intpv{3 Figure 2: §Cgpe
P imports are involved, it e This can be done using (e) Query components v graph of Listing 2

able to easily represent

real-world programs

"gets stuck" [2]

querying all sinks along paths
that match the RegEx P*/?V

6. EVALUATION/DISCUSSION

Evaluation using 26 test cases based on those

5. CONTRIBUTION

Multiple phases are used to construct the scope

2. RESEARCH QUESTION

True behaviour

The current MiniStatix representation of LM does not - . - N :
. in MiniStatix [3]. The results are in Figure 3. !
support imports due to its query scheduling [2]. graph: | | - 6 | Accept | Reject
1. Creating the module hierarchy Accept) ()
Can scope graphs constructed by a phased Haskell 2.Constructing the module structure scope graph New derived scope graph Impl. Reject 1 B
library be used to precheck a language with relative, 3. Import resolution (query P*I?M, placing | edges) primitives: '
unordered and glob imports? How? 4. Adding declarations as type variables » Breadth-first traversal Figure 3: Confusion matrix
5. Type-checking declaration bodies, using inference e Multi-origin querying
3. BACKGROUND (LM) mostly based on [1] . . L
Algorithm 1 Import resolution algorithm DEClaratIVIty and Reusablllty: Limitations:

LM has glob, relative and module A { Require: 1, I, m feature extensibility: | anguages with relative One test case rejected
unordered import semantics module B { Whl}%{ﬁ ?—d;artitiﬂnfintﬂuniqUEand shadowing names Less declarable, but and glOb imports run by amblgUIty detection,
[1]. In that regard, it is def x = 19 _ff*i—* pﬂllth much more flexible into similar issues. which is flawed.
eXtremely similar to Rust [1]. } l f;:rzr ’l’f:nfzﬂ imports could be resolved” and extensible than Reuse for RUby modules SImIlarlYl no prOOf of

e { ¥ gﬂd{_i% Ministatix. or C++ namespaces. correctness.
module A foru € U do
} def x = 19 mo?;lgrr é End%;?;iimr u from f Algorithm 1 7 | CO I\I C LU S ‘ O N

import A f’*f—wﬂd L?s%cigttion A five-step stratified approach Future research recommendations:

mOd-u-I e M { def Y = X “l‘fi muﬁiple queries for a from allin { f} U S algorithm yields mostly correct behaviour, e Fix ambiguity checker

Tmport A } T;{f—_lg[‘f-’ff:‘fﬂﬂt path via label from 7 or () with the ambiguity checker e Prove algorithm correctness

def y = X end for creating a false negative. o Apply this research to Ruby and C++
) Listing 2: Module B is forr & o BF-traversal and multi-origin * Investigate this approach on

imported relatively (as place import edge from m to r querying were derived as new transitive imports

Listing 1: Module A is opposed to A.B) and the PO scope graph primitives in order ¢ Optimize runtime performance
imported in a "glob” fashion, order of imports does not E“dfw':ﬂ;ﬂmm modules in R from [to facilitate this approach.

all declarations are visible. matter (they are unordered).

[1] Hendrik van Antwerpen, Pierre Neron, Andrew Tolmach, Eelco Visser, and Guido Wachsmuth. A constraint language for static semantic analysis based on scope graphs. In Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM '16, page 49-60, New York, NY, USA, 2016. Association for Computing Machinery.
[2] Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. Knowing when to ask: Sound scheduling of name resolution in type checkers derived from declarative specifications. Proc. ACM Program. Lang., 4 (OOPSLA), November 2020.

[3] Aron Zwaan and Hendrik van Antwerpen. Scope Graphs: The Story so Far. In Ralf Lammel, Peter D. Mosses, and Friedrich Steimann, editors, Eelco Visser Commemorative Symposium (EVCS 2023), volume 109 of Open Access Series in Informatics (OASIcs), pages 32:1-32:13, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz- Zentrum fir Informatik.

