
Automatic code completions can be made
by various code language models, and these
can be differentiated in three categories:
single token completion, statement (line)
completion and block completions.

Automatic code completions for developers
(e.g. IntelliSense) usually happen on trigger
points, which are pre-defined points in the
syntax of the code, and a similar approach
can be used for statement predictions [1].

In this study we evaluate the InCoder [2]
model on the statement prediction task,
using SOTA metrics.

01 Introduction
P1K-22 JS1K-22

EM Edit Sim BLEU-4 ROUGE-L F1 METEOR

15

10

5

0

For the evaluation, two novel datasets have
been created: P1K-22 and JS1K-22, based
on the top-1000 most-starred GitHub
repositories.

Inferencing is then done on two versions of
these datasets: the raw files and a version
without comments.

Additionally, test cases on trigger points are
filtered from these datasets and compared.

Finally, we calculate the prediction scores
using the SOTA metrics EM, Edit Similarity,
BLEU-4, ROUGE-L F1, and METEOR.

02 Methodology

An Empirical
Analysis of
InCoder
on the
Statement
Prediction
Task

On average, an improvement of 9.9% on
Exact Match was achieved when using
both contexts, and similar results for the
other metrics, as can be seen in figure I.

Interestingly, for Python, statement
predictions on both contexts were
considerably better without comments,
and on the left context lower on exact
match, but similar on the other metrics
(figure II).

On a similar note, JavaScript seems to
perform very well on trigger points, but
performs slightly worse on code without
comments (figure III).

03 Results

[1] Izadi et al. (2022). CodeFill: Multi-token Code
Completion by Jointly Learning from Structure and Naming
Sequences. arXiv preprint arXiv:2202.06689
[2] Fried et al. "Incoder: A generative model for code
infilling and synthesis." arXiv preprint
arXiv:2204.05999(2022).

Related literature

Frank van der Heijden

f.n.m.vanderheijden@student.tudelft.nl

Supervisor:

Advisor:

Professor:

Maliheh Izadi

Georgios Gousios

Arie van Deursen

1.040.938 Test Cases in P1K-22

1.368.282 Test Cases in JS1K-22

286.705 Source Code Files

4.818.440 Total Test Cases

Figure I

{P, JS}1K-22 improvement BC vs LC

LC BC

EM Edit Sim BLEU-4 ROUGE-L F1 METEOR

1.25

1

0.75

0.5

0.25

0

-0.25

Figure II

P1K-22 improvement w/o comments vs raw

In conclusion, using both contexts
produce significantly better results in all
cases: on the raw dataset, without
comments, and on trigger points.

Furthermore, without comments, the P1K-
22 dataset produced better results.

Finally, trigger points show to be
promising in both datasets, and perform
 even better on the JS1K-22 dataset.

For future research, the benefit of using
contexts across multiple documents
could be researched. However, the model
needs to be changed to handle this kind of
input.

04 Conclusion

TP w/o comments

EM Edit Sim BLEU-4 ROUGE-L F1 METEOR

15

10

5

0

-5

Figure III

JS1K-22 improvement (BC) TP vs w/o comments

