
Automatic code completions can be made
by various code language models, and these
can be differentiated in three categories:
single token completion, statement (line)
completion and block completions.

Automatic code completions for developers
(e.g. IntelliSense) usually happen on trigger
points, which are pre-defined points in the
syntax of the code, and a similar approach
can be used for statement predictions [1]. 

In this study we evaluate the InCoder [2]
model on the statement prediction task,
using SOTA metrics.
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For the evaluation, two novel datasets have
been created: P1K-22 and JS1K-22, based
on the top-1000 most-starred GitHub
repositories.

Inferencing is then done on two versions of
these datasets: the raw files and a version
without comments.

Additionally, test cases on trigger points are
filtered from these datasets and compared. 

Finally, we calculate the prediction scores
using the SOTA metrics EM, Edit Similarity,
BLEU-4,  ROUGE-L F1, and METEOR. 
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On average, an improvement of 9.9% on
Exact Match was achieved when using
both contexts, and similar results for the
other metrics, as can be seen in figure I.  

Interestingly, for Python, statement
predictions on both contexts were
considerably better without comments,
and on the left context lower on exact
match, but similar on the other metrics
(figure II).

On a similar note, JavaScript seems to
perform very well on trigger points, but
performs slightly worse on code without
comments (figure III).
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Figure I
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Figure II

P1K-22 improvement w/o comments vs raw

In conclusion, using both contexts
produce significantly better results in all
cases:  on the raw dataset, without
comments, and on trigger points.

Furthermore, without comments, the P1K-
22 dataset produced better results.

Finally, trigger points show to be
promising in both datasets, and perform 
 even better on the JS1K-22 dataset.

For future research, the benefit of using
contexts across multiple documents
could be researched. However, the model
needs to be changed to handle this kind of
input. 
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Figure III

JS1K-22 improvement (BC) TP vs w/o comments 


