An Empirical

Analysis of
InCoder

on the
Statement

Prediction
Task

Frank van der Heijden
f.n.m.vanderheijden@student.tudelft.nl

Supervisor: Maliheh |zadi
Advisor: Georgios Gousios
Professor: Arie van Deursen

Delft
e t University of
Technology

01 Introduction

Automatic code completions can be made
by various code language models, and these
can be differentiated in three categories:
single token completion, statement (line)
completion and block completions.

Automatic code completions for developers
(e.g. IntelliSense) usually happen on trigger
points, which are pre-defined points in the
syntax of the code, and a similar approach
can be used for statement predictions [1].

In this study we evaluate the InCoder [2]
model on the statement prediction task,
using SOTA metrics.

02 Methodology

For the evaluation, two novel datasets have

been created: P1K-22 and JS1K-22, based
on the top-1000 most-starred GitHub
repositories.

Inferencing is then done on two versions of
these datasets: the raw files and a version
without comments.

Additionally, test cases on trigger points are
filtered from these datasets and compared.

Finally, we calculate the prediction scores
using the SOTA metrics EM, Edit Similarity,
BLEU-4, ROUGE-L F1, and METEOR.

286.705 Source Code Files
4.818.440 Total Test Cases

« 1.040.938 [est Cases in P1K-22
¢ 1.368.282 Test Cases in JS1K-27

03 Results

On average, an improvement of 9.9 on
Exact Match was achieved when using
both contexts, and similar results for the
other metrics, as can be seenin figure |.

Interestingly, for Python, statement
predictions on both contexts were
considerably better without comments,
and on the left context lower on exact
match, but similar on the other metrics
(figure).

On a similar note, JavaScript seems to
nerform very well on trigger points, but
nerforms slightly worse on code without
comments (figure).

04 Conclusion

n conclusion, using both contexts
oroduce significantly better results in all
cases: on the raw dataset, without
comments, and on trigger points.

Furthermore, without comments, the P1K-

2?2 dataset produced better results.

Finally, trigger points show to be
promising in both datasets, and perform
even better on the JS1K-22 dataset.

For future research, the benefit of using
contexts across multiple documents
could be researched. However, the model

needs to be changed to handle this kind of

Input.

Related literature

[1] I1zadi et al. (2022). CodeFill: Multi-token Code
Completion by Jointly Learning from Structure and Naming
Sequences. arXiv preprint arXiv:2202.06689

[2] Fried et al. "Incoder: A generative model for code
Infilling and synthesis." arXiv preprint
arXiv:2204.05999(2022).

Figure |

{P, JS}1K-22 improvement BC vs LC

-P1K-22 -JS1K-22
15

10

0

Edit Sim BLEU-4 ROUGE-L F1 METEOR

Figure

P1K-22 improvement w/o comments vs raw

LC «BC
1.25

1

0.75
0.5
0.25
0

-0.25

EM Edit Sim BLEU-4 ROUGE-LF1 METEOR

Figure lll

JS1K-22 improvement (BC) TP vs w/o comments

- TP -w/o comments
15

10

EM Edit Sim BLEU-4 ROUGE-LF1 METEOR

