Understanding SMT solvers

‘Tristan Schmidt
Exploring Parallelization in Floating-Point Problems

What optimizations are possible by solving floating-point SMT problems in parallel?
4. Results

1. Introduction 3. Floating-Point Solvers

e The solving of floating-point SMT
problems is of great use in software
verification.

e Many solvers exist, but all have their
own strengths, weaknesses and
approach when it comes to solving a
problem. Solvers usually have a subset
of problems where they perform well.

e Parallelisation is a simple optimisation
that is possible on many CPUs. It is
sometimes used internally, but not often
between different solvers.

2. Background

e SMT (Satisfiable Modulo Theories)
problems question whether a
mathematical formula is satisfiable, that
being, that is, if there is an arrangement
of values such that the said formula is
true.

e SMT solvers try to find solutions for
these problems. The most common
approach to solve these problems is to
transform equations of a specific data
type into a boolean satisfiability problem.
e SMT problems involve many different
data types, including floating-point, and
are either satisfiable or unsatisfiable.

A simple example (written in the SMT-LIB
specification) of an unsatisfiable problem:
Find a variable x that is not equal to
itself:

(declare-fun x () (_ FloatingPoint 11 53))
(assert (not (= x x)))
(check-sat)

e CVC5 and Z3: Use bit-blasting, which
transforms every floating-point operation
of an equation, into its equivalent bit
vector operation. It eagerly converts to
bit vector equation to a propositional
formula. Both use CDCL (Conflict Driven
Clause Learning) to find a solution.

e Bitwuzla: Solver for specifically bit
vector and floating-point problems.
Supports bit-blasting, as well as
propagation based local-search.

® GOSAT: Converts floating-point

problems to a real number equation, from

which it tries to minimize the output of
the equation to find a solution using
mathematical optimization.

4. Parallel Solver

e The four mentioned solvers are ran in
parallel to optimize solving speed.

o Six diverse benchmarks are ran from
the 2018 SMT-COMP.

‘ Floating-Point SMT Problem / Benchmark

Parallel Solver

‘ Parallelisation Function distributes the problem ‘

I
A7 v 2 2

Z3 CVvCs Bitwuzla GoSAT

First solver to yield result

v

Result: SAT, UNSAT, UNKNOWN

Fig 1. The parallel solver

Model griggio schanda ramalho vector automizer2019 wintersteiger | Speedup

bitwuzlaprop 7923.54s 1461.23s 1561.95s 13.32s 2.34s X 2.30/2.30
cves 4985.38s 370.45s 1181.67s 15.90s 2.68s 3817.71s 1.35/1.35
gosat 775.48s 2580-75s 2160:00s 5460:00s 1440:00s 1198390465 | 29.65/1.37
bitwuzla 4697.98s 200.75s 1087.13s 14.19s 2.39s 3839.68s | 1.14/1.14
z3 9394.44s 330.98s 1203.06s 18.33s 427.09s 3864.78s 3.52/3.52
parallel 564.73s 166.95s 1158.85s 27.71s 2.92s 6770.50s 1.00/1.00
Speedup 7.49/7.49 3.72/2.61 1.20/1.08 1.79/0.55 8.45/3.06 2.38/0.57 |

Fig 2. Time spent solving for each benchmark

Problems solved in parallel (by solver) per benchmark Timeline of solving benchmark griggio (timeout — 60)

N timeout . gosat eveh . bitwuzla - 3

200F
5t

—— bitwuzlaprop
griggio

(out of 214)

150 b _— cvc5H X
e] 5] arallel
150 200 125 p
100 F 4 —— gosat
ramalho 5E 1 — bitwuzla

50
25 F
0k

11— z3

Problems solved

0 2500 5000 7500
Time (seconds)

schanda

Fig 4. Results of the griggio benchmark
Timeline of solving benchmark wintersteiger (timeout = 60)

/

0 2000 4000 6000
Time (seconds)

vector

40000
35000
30000
25000
20000
15000
10000
5000
0

— 3
—— Dbitwuzla
antomizer2019 cved

—— parallel

wintersteiger

22125

Problems solved (out of 39994

5000 10000 15000 20000 25000 30000 35000

0

Fig 3. Amount of problems solved in parallel Fig 5. Results of the wintersteiger benchmark

5. Conclusion

o Running solvers in parallel provides a significant speedup when
solving more complex problems.

e Parallel solving does not speed up the solving of small problems, it
rather provides extra overhead.

e Although most benchmarks are dominated by one solver, other solver
still provide a significant reduction in solving time.

e In the future, more solvers could be ran in parallel.

