PROBLE

AN

AUTOMATED VALIDATION OF DEFINITIONAL INTERPRETERS

Validating Definitional Interpreters Using Property-Based

Testing

/

data

eval
eval

evil
evil

eval ::

evil ::

Expr = Num Int | Add Expr Expr

EXpr
(Num 1)
(Add el

EXpr
(Num 1)
(Add el

-> Int
= 1
e2) =

-> Int
= 1
e2) =

We want to detect that
eval and evil are NOT

interp el + interp €2 | equivalent with:

———
— A uniform generator

— QuickCheck

interp el + interp el
P Pe2 1 -~ smallCheck

QuickCheck:

*** Failed! Falsified (after 5 tests):

2 +2+4+ (-4) +0+ (-1) +1+1

Uniform generation:
xx*x Falled! Falsified (after 1 test):
O+ 1+ 0

SmallCheck:
Falled test no. 4.

there exists 1 + 0 such that

condition 1s false

Reported counter-examples
for each generation method

METHOD

y

l.Define Algebraic Data Types (ADTs)

Arithmetic ADT (Add, Sub, Mul, Div)
Boolean ADT (And, Or, Not)
Conditional ADT (Arithmetic, boolean,

2.Write Test Data Generators

Write QuickCheck generators

— Write SmallCheck generators

Define spaces for the ADTs and

-

3.Check Interpreter Equivalence

Use each generation method to
check the following property:

conditional & lambda operations) write the respective uniform prop_interp :: Expr -> Bool |
generators prop_interp e = interpl e == interp2 e
RESULT>
AVG number of tests to detect Sy
faults 1n each pattern match case iy ’
Method | Add | Sub | Mul | Div |AVG = Average | *° £
ber of D 5 1500-
C 3 3 4 3 num £ 40 21500
. tests out of |?]
SC 12 19 33 37 10 runs of .2150 %1000-
[K} 4 5 6 3 100 tests Pmm %
5 500 A
Method | And | Or | Not sl
QC 0 / O | QC = QuickcChek, S i] : a ; | ;] 3' : :
SC O 16 O SC = SmallCheck, size of terms Size/of tems
UG = Uniform generation . . .l .
UG 3 2 -, 5 Time & Space consumption for the conditional ADT (UG Method)

CONCLUSIO

AN

dat

d.

4

The uniform generation method
outperforms the QuickCheck &
SmallCheck naive generators
when 1t comes to well-typed

Time needed for the
uniform generator grows
exponentially as size of
terms increases. To that
end, an improvement 1s
heeded.

While fast, QuickCheck &
SmallCheck require more

complex generation methods

to work on a wide variety

of grammars.

Delft
e t University of
Technology

Alexandru Radu Moraru
CSE3000 02/07/2021

Casper Bach Poulsen
Cas van der Rest

