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Introduction

In current times user devices hold significant amounts of data that’s valuable for learning. Fed‐
erated Learning (FL) has gained traction due to privacy and sensitivity concerns. FL preserves
user privacy while effectively capturing data heterogeneity. In FL, a parameter server distributes
a global model to user devices, which train it on local data. Client nodes send updates back to
the server, which aggregates them into a local model, repeating this process iteratively.
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(a) Synchronous Federated Learning Deployment
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(b) Asynchronous Federated Learning Deployment

Figure 1. The coloured bars represent working time and the grey bars represent idle time. In the synchronous
scenario, the parameter server waits for all clients to finish their jobs before aggregating. In the asynchronous
scenario the parameter server aggregates as soon as any client is done updating.

Simulations

Deploying FL systems presents many technical challenges. To surmount these obstacles, re‐
searchers often turn to simulations, as a way to assess the efficacy of FL algorithms. In an FL
simulation, one or potentially multiple machines do the work of a parameter server and client
nodes to iteratively train local models and aggregate them into a global model.

S1 S2

S3A1

A2M1

M2

B2

C2C1

B1

Figure 2. Simulation of the synchronous FL example from Fig 7a on two machines

Variance of resulting models

Due to the non‐IID distribution of data over client nodes, if client CA finishes its update and
aggregation before client CB, the resulting global model will be different than if the order was
reversed. The more heterogenous the setting becomes the bigger the variability can be.
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(b) Second scenario
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(a) 5 runs of an FL simulation on identical dataset
distributions.

Figure 5. Variance in simulated FL models

Proposed Solution

In order to minimise variability we choose to sequence simulation by constraining the order of
client updates. Every client update can be scheduled for execution only once all its predecessors
have finished simulating. Hypothesis: simulating under precedence constraints reduces the vari‐
ance of final trained model accuracies.
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Figure 6. DAG for the asynchronous scenario ‐ Fig 7b

Methodology

We conducted experiments to assess the performance and variability of Federated Learning
algorithms using the MNIST dataset. We utilized a Multi‐Layer Perceptron (MLP) model with a
784‐neuron input layer, a 128‐neuron hidden layer, and a 10‐neuron output layer. The dataset,
comprising 60,000 training and 10,000 test images, was split among clients in a highly unbal‐
anced, non‐IID manner, reflecting real‐world data distribution scenarios. Our experiments,
implemented using the Flower framework with PyTorch, examined how simulation scheduling
constraints affect model accuracy variance and the makespan of different scheduling algo‐
rithms.
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(b) Class labels distribution over clients

Scheduling

Pm|prec, STsd|Cmax (1)

The scheduling problem was shown to be NP‐Hard by Ulman [1] so we propose two heuristic
algorithms to solve the scheduling problem ‐ Ant Colony Optimisation, and an Evolutionary
Algorithm. Both are described below and pseudocode is provided. Furthermore, we propose a
consistent heuristic that is used in combination with the A* algorithm to find optimal schedules
for small problem instances.

Results
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Figure 8. Speed of simulation of FL system.
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Figure 9. Variance in simulated FL models.

S 1 S 2 S 3 S 4 S 5 µ σ2

normal 0.830 0.816 0.830 0.830 0.830 0.843 4.5 × 10−4

232.31 248.87 247.11 235.18 239.21 240.22 50.7

prec 0.926 0.936 0.923 0.930 0.929 0.929 2.3 × 10−5

314.31 321.45 328.41 309.81 326.1 319.6 64.3

Table 1. The five final model accuracies are given for two
sets of simulations, one under no constraints, and one
under precedence constraints.

4 9 13 15 18

Random Time 4.3×10−5 7.7×10−5 1.1×10−4 8.1×10−5 1.3×10−4

Makespan 15 23 36 44 51

ACO Time 0.004 0.016 0.025 0.031 1.036
Makespan 15 24 36 39 47

EA Time 0.138 0.325 0.389 0.434 0.511
Makespan 15 21 35 36 45

Table 2. Random schedule, ACO, and EA assesed on 5
problem instances with 4, 9, 13, 15, and 18 jobs to be
scheduled on 2 machines. For each algorithm, it is given
how much time (in seconds) it took the algorithm to
arrive to a solution, and what was the makespan of the
final schedule.

4 9 13 15 18

Nodes 28 1 646 1 012 715 5 428 190
Dijkstra’s Time 0.08 0.2 2.68 21.889

Makespan 15 21 35 36

Nodes 12 884 68 231 2 019 696
A*−LC Time 0.04 0.16 0.218 5.110

Makespan 15 21 35 36

Nodes 28 1 132 163 022 337 268 5 230 117
A*−OF Time 0.07 0.19 0.489 3.754 14.695

Makespan 15 21 35 36 45

Table 3. Results of Dijkstra’s algorithm, A∗ with LC
heuristic, and A∗ with OF heuristic run on 5 problem
instances of varying sizes.

50 100 250 1000

Random Time 2.9×10−4 1.1×10−3 1.3×10−3 5.9×10−3

Makespan 99 296 618 3019

ACO Time 2.146 3.501 4.712 67.98
Makespan 90 275 512 2458

EA Time 1.414 3.533 16.14 216.79
Makespan 78 269 554 2552

Table 4. Random schedule, ACO, and EA assesed on 5
problem instances with 50, 100, 250, and 1000 jobs to
be scheduled on 3 machines. For each algorithm, it is
given how much time (in seconds) it took the algorithm
to arrive to a solution, and what was the makespan of
the final schedule.
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