Stuck in a (While) Loop

Assessing Coinduction in Agda Using Cyclic Program Traces

]
TUDelft

1. Background

» Program Trace: describes progression of states a « While: simple imperative language (while loops,

program passes through variable assignment, conditional statements)

r=0 = z=1 = =2 = .. » Traces and relational semantics implemented for

- Cycles (e.g. infinite loops) —s infinite traces While using each of Agda’s coinduction techniques

 Applications of non-terminating programs — * Irace: non-empty colist of staies

operating systems, industrial control « Semantics: connects traces to programs

« Verifying program correctness — proof assistants Coinductive records: special care needs to be
taken to encode “choice” between terminating and

» Proof assistants (e.g. Agda) are often fotal, o o
continuing — more complex definition

guaranteeing programs terminate

« Totality + reasoning about infinite structures? — data Trace, : Set where dae {F:j}' Tf(‘;ﬁ;l ';f)vj'aﬁ[fsvtv)here
coinduction tnil : State — Trace; tcons : V {st try trs}
tcons : State — oo Trace; — Trace; — 00 (bt = b try)

— (tcons st try) =~ (tcons st try)

Three methods of coinduction in Agda, each

| guarantee'mg productivity: /d;aTT:a:e_;;e_tv_vr;r_e_________d;t‘:;—;__—v:_{s%;;a:e:;;e;;;v;‘;‘;\\\\

1. Musical uses musical symbols to represent “delay” /il State — rTrace, ~s (nil st) 1=~ (tnil st) \

13 L] a . 5 A |

(ﬁ) and “force (I?) operatlons. l tcons : State — Tracey — rTrace; tcons : V (st try tra} — try & tr |

_______________________ I — (tcons st try) r= (tcons st tra) I

Ve . . . ™~ I record Trace, : Set where I

| 2. Guarded relies on coinductive records and | | coinductive record _~_(in, try : Traces) : Set where .

. inducti I

___copattern matching. _ | constructor mKTr e —]

“.._____________________ \ field field /I
out : rTraces P : (out try) 2 (out try) P4

i 3. Sized introduces “sizes” into types to help guide the e
: data exec : Stmt — State — Trace,, — Set
data execseq : Stmt — Trace,, — Trace,, — Set

. data Tracey (i : Size) : Set where ‘ 5. Futu re Resea I’Ch
s : State — Trace, i *

What are the different ways to model oo .
: i * Verification of identified limitations

.

Research Question

tcons : State

(potentially infinite) program traces which are : B :
. . . H — lracey /| . .
suitable for use in the Agda proof assistant? S (,__Size)f‘Rel atey oo) Lovelzaro e | Documentation and error
« How do these approaches compare in L messages — reduce learning

curve

— Thunk (\ s — Bisim s (force try) (force try)) i &

their abilities and limitations?

»
0

.. ° COIISt representatIOHS |n Guarded
coinduction

while true { X = X + 1 } « More complex language —

\/ verification of practical programs

CSE3000 — Research Project

+ What improvements can be made to
coinduction support in Agda?

Three types of proof, which combine to guarantee

behavior of a program:

» Trace proofs: Proofs that a variable follows an

increasing progression in an infinite trace

» Program proofs: Proofs that programs satisfy

traces, including for infinite traces

» Language proof: Proof of determinism of the

language — for any state and statement, two traces
arising from execution of the statement in the state
must be bisimilar

Proof

Type Encoding

Trace Program Language
Musical Trace; Ve v v
Traces v e
Guarded
Traces
Sized Tracey v v v

Success of experiments for each encoding

4. Agda Limitations

» Lack of documentation — steep learning curve
» Error messages obscure the root cause of problems
+ Unification issues under function application |

4 trg &= mkKTr (tnil st)

22 4~ mkTr (nilst) 2 2o ////
What shape could out try r= out tr,

be? tnil? Preposterous!

« Guardedness too strict as a productivity condition
— battles with the termination checker

» Coinductive records model concept of “choice”
poorly

Supervisors: Bohdan Liesnikov, Jesper Cockx

Claire Stokka — C.C.Stokka@student.tudelft.nl

