
Algorithms and Testing
Swarming Path Algorithms
Conduct a test on a simplified version of
the multiple destination routing problem
using two algorithms: Vasarehelyi [1] and
Olfati-Saber [2]. These algorithms use the
distance to obstacles and the positions of
their fellow agents to pass through the
maze.
Delta Swarm
Swarm must stay in a delta formation
while moving at a constant speed.
Performance Measuring
Calculate performance through a
heuristic scoring function.
BW4T Collaborative AI
Robots within a swarm working in a
collaborative setting to complete a task
where communication is paramount.

Research Question

References
Front Distance Sensor Fault
Measurements regarding distance to an
obstacle or agent in front of robot will be
skewed for one specific agent.
- Failure a percentage of time.
- Changeable failure offset.
Malicious Actor
Lying agent introduced into swarm, lies
changeable percentage of time.
Information Delay
Measurements come in with diff. delay.

Effect of Sensory Faults within Robot Swarms
Stijn Coppens Supervisor(s):Ranga Rao Venkatesha Prasad, Suryansh Sharma, Ashutosh Simha

Background
Swarming
With the increased use of autonomous
swarms of wheeled mobile robots in real
life situations the need for robust
swarming algorithms becomes apparent.
It is paramount that these systems can
handle faults that might occur, whether
they be sensory or mechanical.
Sensory faults
Can range from range sensors failing all
the way to communication breakdown,
whether it be accidental or due to some
malicious actor.

- What is the effect of sensory faults on
the performance of a robot swarm acting
out a routing or foraging problem?
- How do we measure the effect of these
faults accurately, taking into account
multiple types of failures?

Simulation Environment

Trajectory showing failure of front facing sensor by orange node.

MatLab
Simulation software that allows for realistic
and repeatable runs of the 2 tested
algorithms using already implemented
algorithms from SwarmLab [3].

Delta Swarm Formation
Custom written point-mass based
simulation, positions described by

BW4T Simulation
Python based collaborative environment,
created by Soria, Schiano and Floreamo [4].

Introduced Faults[1] C. Vir ́a gh, G. V ́as ́arhelyi, N. Tarcai, T. Sz ̈or ́enyi, G.
Somorjai, T. Nepusz, and T. Vicsek, “Flocking algorithm for
autonomous flying robots,” Bioinspiration&amp Biomimetics,
vol. 9, no. 2, p. 025012, may 2014. [Online]. Available:
https://doi.org/10.1088%2F17483182%2F9%2F2%2F025012

[2] R. Olfati-Saber, “Flocking for multi-agent dynamic systems:
algorithms and theory,” IEEE Transactions on Automatic
Control, vol. 51, no. 3, pp. 401–420, 2006.

[3] E. Soria, F. Schiano, and D. Floreano, “Swarmlab: a matlab
drone swarm simulator,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020, pp.
8005–8011.

[4] M. Johnson, C. Jonker, M. Riemsdijk, P. J. Feltovich, and J.
Bradshaw, “Joint activity testbed: Blocks world for teams
(bw4t),” 11 2009, pp. 254–256.

Conclusions
This project attempted to quantify the
relation between sensory faults and
performance within a robotic swarm.
Multiple experiments were conducted
on multiple types of sensory faults
within different custom written
simulations. It was discovered that while
usually quantifiable, it is hard to create a
definitive function that describes the
effect of any given type of sensory error.

Results
Lot of data gathered, excerpt given
Distance Sensor Failure (Olfati-Saber)

Collaborative Swarm

Intra-round 
learning

Inter-round
learning

Information
delay


