
Author: Mayte Steeghs | m.c.steeghs@student.tudelft.nl

Supervisors: Kim van den Houten & Léon Planken

EEMCS, Delft University of Technology, The Netherlands

[1] Naderi, B., Ruiz, R., & Roshanaei, V. (2023). Mixed-integer programming vs.
constraint programming for shop scheduling problems: new results and
outlook. INFORMS Journal on Computing, 35(4), 817-843.
[2] Houten, K. V. D., Planken, L., Freydell, E., Tax, D. M., & de Weerdt, M.
(2024). Proactive and Reactive Constraint Programming for Stochastic Project
Scheduling with Maximal Time-Lags. arXiv preprint arXiv:2409.09107.
[3] Lan, L., & Berkhout, J. (2025). PyJobShop: Solving scheduling problems
with constraint programming in Python. arXiv preprint arXiv:2502.13483.
[4] Reijnen, R., van Straaten, K., Bukhsh, Z., & Zhang, Y. (2023). Job shop
scheduling benchmark: Environments and instances for learning and non-
learning methods. arXiv preprint arXiv:2308.12794.

• Industry 4.0 the rise of "digital factories“ requires job shop
scheduling algorithms with stochastic durations.

• Job shop scheduling problems (JSP) are NP-Hard combinatorial
problems.

• Previously, Mixed Integer Programming (MIP) methods like
BACCUS and SORU-H were considered state-of-the art. A recent
paper shows Constraint Programming (CP) outperforms MIP
across a wide range of benchmarking scheduling problem
instances [1].

• This opened up research gap for finding robust proactive
schedules or reactive approaches with rescheduling during
execution which was previously considered too computationally
heavy.

• van den Houten et al. filled this research gap by presenting
proactive, reactive, and hybrid approach using latest CP
advancements for the SRCPSP/max problem [2].

• Applications to different scheduling problem variants under
different temporal constraints unexplored for these approaches.

Does an STNU-based method yield superior solution quality and
runtime for the stochastic Flexible Job Shop Scheduling Problem
with sequence-dependent set-up times compared to proactive and
reactive CP methods?

1. How does uncertainty affect performance and feasibility of
solutions?

2. To what extent do sequence-dependent set-up times affect
makespan, the feasibility ratio and computational time offline
and online?

3. How robust are the different methodologies when scaling input
problem size?

• PyJobShop: a scheduling problem CP solver in Python. [3]
• IBMs CP Solver: PyJobShop makes use of this solver. This solver

was selected over Googles OR Tools for its direct implementation
of SDST and associated performance benefits.

• Reactive, Proactive and Hybrid Approaches were taken from the
code base of van den Houten et al. [2] and adapted for PyJobShop.

• The Flexible Job-Shop Problem Scheduling with Sequence-
Dependent Set-Up Times (FJSP-SDST) extends the classical job-
shop by allowing multiple alternative machines per task and by
imposing set-up times that depend on the order of consecutive
tasks on the same machine.

• In the stochastic variant, durations follow a stochastic
distribution. The duration dj is an independent random variable.

Gannt chart of SFJSP without SDST Gannt chart of Stochastic FJSP

Datset: Job Shop Scheduling Benchmark: Environments and
Instances for Learning and Non-learning Methods [4].
• Contains 20 FJSP-SDST instances which will be converted to

stochastic instances using sampler.

Experiments
• Each method is sampled 10 times and executed on every

instance for noise levels ε = 1 and 2.
• SDST were scaled using α = (0, 0.25, 0.5, 0.75, 1) to answer

sub-question 2.
• Proactive method used γ=1, reactive used γ=0.9

Evaluation Metrics:
1. Makespan of the solution
2. Offline CPU time
3. Online CPU time
4. Feasibility Ratio

Statistical Test:
• Wilcoxon matched-pairs signed-rank test (consistency),
• Binomial proportion test (win counts)
• Paired t-test on “double hits” (magnitude).

Proactive Method
• Model: draw duration samples / quantiles and solve a scenario-

based CP-optimization to get one buffered start-time vector
• Offline step: heavy search to minimize expected makespan while

remaining feasible for all sampled scenarios
• Online execution: zero computation during runtime

STNU Method
• Model: Construct POS from resource chain of single-point

solution. Encode each task as contingent links inside an STNU
and prove dynamic controllability (DC) → a policy always exists
for every possible duration realization

• Offline step: Solve deterministic single-point solution using
PyJobShop. Construct STNU from POS, check DC

• Online execution: RTE* dispatcher.

Reactive Method
• Model: Begin with single-point solution; treat every actual finish

time as a trigger to re-solve.
• Offline Step: Solve deterministic single-point solution using

PyJobShop.
• Online loop: observe → re-optimise → dispatch new schedule

Solution Quality: Makespan

Computation Time (Online and Offline)

1. Uncertainty

2. Sequence Dependent Setup Times

3. Scalability

• Raising the noise level from ϵ = 1 to ϵ = 2 inflated the proactive
makespan and increased both its offline and online times, while
thea reactive and STNU makespans stayed unchanged;

• However, higher noise dramatically increased the reactive
method’s online computation.

• Instances 10 – 20 have similar setup time,
task time and SDST feasibility ratios

• Plots comparing makespan, online and
offline computation time

Reactive CP method
• Dynamically reschedules at every task completion and

is very flexible, handling stochasticity in combination
with sequencing constraints well.

• Delivers the consistently lowest makespan of all
methods and better machine assignments of tasks.

• Much higher online computation time (frequent re-
solving)

STNU method
• Contrary to hypothesis, proactive CP beats STNU on

makespan for large/complex instances
• STNU must satisfy dynamic controllability (DC) which

adds conservative slack to guarantee feasibility under
worst-case uncertainty

• Modelling every sequence-dependent setup time
(SDST) as a contingent link densifies the STNU graph,
compounding conservatism.

• Underlying implementation factors might be the cause
of this difference.

• High bound on online timeout of the reactive method
might inequitably bias the results.

• Performing hyperparamater tuning on our dataset and
setting the timeouts in an equitable way across methods

• Comparing MIP solutions to CP might further close the
literature gap.

• Alternative distributions of task duration estimations
might be closer to real life scenarios.

• Increase # samples per method to increase statistical
robustness of results.

• Fix amount of threads for CP solvers and standardize CPU
time measurements to increase reproducibility.

• Perform deeper investigation in the underlying graph
structures of instances including how infeasible SDST
arcs prune domain.

	Slide 1

