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• Industry 4.0 the rise of "digital factories“ requires job shop 
scheduling algorithms with stochastic durations. 

• Job shop scheduling problems (JSP) are NP-Hard combinatorial 
problems.

• Previously, Mixed Integer Programming (MIP) methods like 
BACCUS and SORU-H were considered state-of-the art. A recent 
paper shows Constraint Programming (CP) outperforms MIP 
across a wide range of benchmarking scheduling problem 
instances [1].

• This opened up research gap for finding robust proactive 
schedules or reactive approaches with rescheduling during 
execution which was previously considered too computationally 
heavy.

• van den Houten et al. filled this research gap by presenting 
proactive, reactive, and hybrid approach using latest CP 
advancements for the SRCPSP/max problem [2]. 

• Applications to different scheduling problem variants under 
different temporal constraints unexplored for these approaches.

Does an STNU-based method yield superior solution quality and 
runtime for the stochastic Flexible Job Shop Scheduling Problem 
with sequence-dependent set-up times compared to proactive and 
reactive CP methods?

1. How does uncertainty affect performance and feasibility of 
solutions?

2. To what extent do sequence-dependent set-up times affect 
makespan, the feasibility ratio and computational time offline 
and online?

3. How robust are the different methodologies when scaling input 
problem size?

• PyJobShop: a scheduling problem CP solver in Python. [3]
• IBMs CP Solver: PyJobShop makes use of this solver. This solver 

was selected over Googles OR Tools for its direct implementation 
of SDST and associated performance benefits.

• Reactive, Proactive and Hybrid Approaches were taken from the 
code base of van den Houten et al. [2] and adapted for PyJobShop.

• The Flexible Job-Shop Problem Scheduling with Sequence-
Dependent Set-Up Times (FJSP-SDST) extends the classical job-
shop by allowing multiple alternative machines per task and by 
imposing set-up times that depend on the order of consecutive 
tasks on the same machine.

• In the stochastic variant, durations follow a stochastic 
distribution. The duration dj is an independent random variable.

Gannt chart of SFJSP without SDST Gannt chart of Stochastic FJSP

Datset: Job Shop Scheduling Benchmark: Environments and 
Instances for Learning and Non-learning Methods [4]. 
• Contains 20 FJSP-SDST instances which will be converted to 

stochastic instances using sampler.

Experiments
• Each method is sampled 10 times and executed on every 

instance for noise levels ε = 1 and 2.
• SDST were scaled using α = (0, 0.25, 0.5, 0.75, 1) to answer 

sub-question 2.
• Proactive method used γ=1, reactive used γ=0.9

Evaluation Metrics:
1. Makespan of the solution
2. Offline CPU time
3. Online CPU time
4. Feasibility Ratio

Statistical Test:
• Wilcoxon matched-pairs signed-rank test (consistency),
• Binomial proportion test (win counts)
• Paired t-test on “double hits” (magnitude).

Proactive Method
• Model: draw duration samples / quantiles and solve a scenario-

based CP-optimization to get one buffered start-time vector
• Offline step: heavy search to minimize expected makespan while 

remaining feasible for all sampled scenarios
• Online execution: zero computation during runtime

STNU Method
• Model: Construct POS from resource chain of single-point 

solution. Encode each task as contingent links inside an STNU 
and prove dynamic controllability (DC) → a policy always exists 
for every possible duration realization

• Offline step: Solve deterministic single-point solution using 
PyJobShop. Construct STNU from POS, check DC

• Online execution: RTE* dispatcher.

Reactive Method
• Model: Begin with single-point solution; treat every actual finish 

time as a trigger to re-solve.
• Offline Step: Solve deterministic single-point solution using 

PyJobShop.
• Online loop: observe → re-optimise → dispatch new schedule

Solution Quality: Makespan

Computation Time (Online and Offline)

1. Uncertainty

2. Sequence Dependent Setup Times

3. Scalability

• Raising the noise level from ϵ = 1 to ϵ = 2 inflated the proactive 
makespan and increased both its offline and online times, while 
thea reactive and STNU makespans stayed unchanged;

• However, higher noise dramatically increased the reactive 
method’s online computation.

• Instances 10 – 20 have similar setup time, 
task time and SDST feasibility ratios 

• Plots comparing makespan, online and 
offline computation time

Reactive CP method
• Dynamically reschedules at every task completion and 

is very flexible, handling stochasticity in combination 
with sequencing constraints well. 

• Delivers the consistently lowest makespan of all 
methods and better machine assignments of tasks.

• Much higher online computation time (frequent re-
solving)

STNU method
• Contrary to hypothesis, proactive CP beats STNU on 

makespan for large/complex instances
• STNU must satisfy dynamic controllability (DC) which 

adds conservative slack to guarantee feasibility under 
worst-case uncertainty

• Modelling every sequence-dependent setup time 
(SDST) as a contingent link densifies the STNU graph, 
compounding conservatism.

• Underlying implementation factors might be the cause 
of this difference.

• High bound on online timeout of the reactive method 
might inequitably bias the results. 

• Performing hyperparamater tuning on our dataset and 
setting the timeouts in an equitable way across methods

• Comparing MIP solutions to CP might further close the 
literature gap.

• Alternative distributions of task duration estimations 
might be closer to real life scenarios.

• Increase # samples per method to increase statistical 
robustness of results.

• Fix amount of threads for CP solvers and standardize CPU 
time measurements to increase reproducibility.

• Perform deeper investigation in the underlying graph 
structures of instances including how infeasible SDST 
arcs prune domain.
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