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Introduction Software Results Conclusion
« Industry 4.0 the rise of "digital factories® requires job shop - PyJobShop: a scheduling problem CP solver in Python. [3] . b .
scheduling algorithms with stochastic durations. « IBMs CP Solver: PyJobShop makes use of this solver. This solver Solution Quality: Makespan. Reactive CP method

« Dynamically reschedules at every task completion and

« Job shop scheduling problems (JSP) are NP-Hard combinatorial was selected over Googles OR Tools for its direct implementation

problems. of SDST and associated performance benefits. is very flexible, handling stochasticity in combination
« Previously, Mixed Integer Programming (MIP) methods like « Reactive, Proactive and Hybrid Approaches were taken from the //_\i with sequencing constraints well.
BACCUS and SORU-H were considered state-of-the art. A recent code base of van den Houten et al. [2] and adapted for PyJobShop. reactive = proactive > stnu « Delivers the consistently lowest makespan of all
paper shows Constraint Programming (CP) outperforms MIP e methods and better machine assignments of tasks.
across a wide range of benchmarking scheduling problem . . . .
Srlaess [, « Much higher online computation time (frequent re-
« This opened up re§earch gap for fingiing robust p.roactive.z Computation Time (Online and Offline) solving)
schedules or reactive approaches with rescheduling during CP Methods
execution which was previously considered too computationally . STNU method
heavy. , , , Proactive Method , , « Contrary to hypothesis, proactive CP beats STNU on
- van den Houten et al. filled this research gap by presenting « Model: draw duration samples / quantiles and solve a scenario- _ _ makespan for laree/complex instances
proactive, reactive, and hybrid approach using latest CP based CP-optimization to get one buffered start-time vector reactive = proactive = stnu P arg o4 - .
advancements for the SRCPSP/max problem [2]. - Offline step: heavy search to minimize expected makespan while \_,/// * STNU must Satl.Sfy dynamic COntrOllabllltY (DC) which
- Applications to different scheduling problem variants under remaining feasible for all sampled scenarios adds conservative slack to guarantee feasibility under
different temporal constraints unexplored for these approaches. - Online execution: zero computation during runtime worst-case uncertainty

 Modelling every sequence-dependent setup time
(SDST) as a contingent link densifies the STNU graph,

- Raising the noise level from € = 1 to € = 2 inflated the proactive compounding conservatism.
makespan and increased both its offline and online times, while « Underlying implementation factors might be the cause
thea reactive and STNU makespans stayed unchanged; of this difference.

« However, higher noise dramatically increased the reactive

STNU Method 1. Uncertainty

« Model: Construct POS from resource chain of single-point
solution. Encode each task as contingent links inside an STNU
and prove dynamic controllability (DC) — a policy always exists
for every possible duration realization

« Offline step: Solve deterministic single-point solution using

Research Question

Does an STNU-based method yield superior solution quality and
runtime for the stochastic Flexible Job Shop Scheduling Problem
with sequence-dependent set-up times compared to proactive and
reactive CP methods?

1. How does uncertainty affect performance and feasibility of
solutions?

2. To what extent do sequence-dependent set-up times affect
makespan, the feasibility ratio and computational time offline
and online?

3. How robust are the different methodologies when scaling input
problem size?

Problem Definition

« The Flexible Job-Shop Problem Scheduling with Sequence-
Dependent Set-Up Times (FJSP-SDST) extends the classical job-
shop by allowing multiple alternative machines per task and by
imposing set-up times that depend on the order of consecutive
tasks on the same machine.

« In the stochastic variant, durations follow a stochastic
distribution. The duration d;is an independent random variable.

Gannt chart of SFJSP without SDST Gannt chart of Stochastic FJSP

PyJobShop. Construct STNU from POS, check DC
Online execution: RTE* dispatcher.

Reactive Method

Model: Begin with single-point solution; treat every actual finish
time as a trigger to re-solve.

Offline Step: Solve deterministic single-point solution using
PyJobShop.

Online loop: observe — re-optimise — dispatch new schedule

Experimentation

Datset: Job Shop Scheduling Benchmark: Environments and

Instances for Learning and Non-learning Methods [4].

« Contains 20 FJSP-SDST instances which will be converted to
stochastic instances using sampler.

Experiments

« Each method is sampled 10 times and executed on every
instance for noise levels £ =1 and 2.

« SDST were scaled using a = (0, 0.25, 0.5, 0.75, 1) to answer
sub-question 2.

« Proactive method used y=1, reactive used y=0.9

Evaluation Metrics:

1. Makespan of the solution
2. Offline CPU time

3. Online CPU time

4. Feasibility Ratio

Statistical Test:

- Wilcoxon matched-pairs signed-rank test (consistency),
- Binomial proportion test (win counts)

 Paired t-test on “double hits” (magnitude).

method’s online computation.

2. Sequence Dependent Setup Times

Offline Computation Time across SDST scaled by a
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3. Scalability

Makespan vs. Instance Size Z-normalised Metrics per Instance
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« Plots comparing makespan, online and
offline computation time
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Online Computation Time vs. Instance Size

« Instances 10 - 20 have similar setup time,

Offline Computation Time vs. Instance Size
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Recommendations

« High bound on online timeout of the reactive method
might inequitably bias the results.

« Performing hyperparamater tuning on our dataset and
setting the timeouts in an equitable way across methods

« Comparing MIP solutions to CP might further close the
literature gap.

 Alternative distributions of task duration estimations
might be closer to real life scenarios.

« Increase # samples per method to increase statistical
robustness of results.

« Fix amount of threads for CP solvers and standardize CPU
time measurements to increase reproducibility.

« Perform deeper investigation in the underlying graph
structures of instances including how infeasible SDST
arcs prune domain.
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