Attacking Federated Continual Learning With Clients
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Sign Flipping attacks were significantly more potent

- Federated Learning ... Model training on distributed clients than the rest, but lack practicality
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and datasets, not central servers [1] Label Flipping attacks are generally effective and

- Continual Learning ... Model learns from new data over easier to implement but basic label flipping on its
time without forgetting previously acquired knowledge [2] I\/l ethodo | Ogy not useful
- Federated Continual Learning (FCL) ... Learn tasks (e.g. E - Incremental Forgetting is comparable to Task-Based

- RQ: How can FCL be attacked with Byzantine clients?

1: detect human faces, 2: detect dog faces) over time while Label Flipping and harder to detect
- Apply the following attacks and evolve into

preventing "catastrophic forgetting" on past tasks Incremental Forgetting is only useful in FCL settings
modified attacks
- Byzantine behavior ... Unpredictable or malicious behavior, and requires significant tuning

- Gaussian Noise

delivering incorrect information to the server

- Backdoor Attack [3]
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Main Findings:
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Figure 2: Average Percent Forgetting across all modified and novel attacks in FedWeIT - Develop a novel attack (Incremental Forgettlng) - Test attacks againSt defensive aggregation algorithms
- Incremental Forgetting disguises itself better among - Test attacks against existing FCL algorithms - Focus on targeted attacks as opposed to indiscriminate

correct clients (updates have high cosine similarity)
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