
              Background
- Data cannot always be shared (e.g. privacy)

- Federated Learning ... Model training on distributed clients 

and datasets, not central servers [1]

- Continual Learning ... Model learns from new data over 

time without forgetting previously acquired knowledge [2]

- Federated Continual Learning (FCL) ... Learn tasks (e.g. 

1: detect human faces, 2: detect dog faces) over time while

preventing "catastrophic forgetting" on past tasks

- Byzantine behavior ... Unpredictable or malicious behavior,

delivering incorrect information to the server
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           Methodology
- RQ: How can FCL be attacked with Byzantine clients?

- Apply the following attacks and evolve into 

  modified attacks

  - Gaussian Noise

  - Backdoor Attack [3]

  - Sign Flipping

        Task-Based Sign Flipping

     

  - Label Flipping

        Task-Based Label Flipping

        Final-Task

- Develop a novel attack (Incremental Forgetting)

- Test attacks against existing FCL algorithms

- Create novel attack: Incremental Forgetting

- At each task, penalize the parameters for being 

  too close to the old parameters:

θbyz

θold

θnew-1

θnew-2

          Conclusions
Main Findings:

- Sign Flipping and Task-Based Sign Flipping result in 

   most drastic forgetting

- Novel Incremental Forgetting has performance 

   comparable to Task-Based Label Flipping

- Novel Incremental Forgetting clients provide updates 

   most similar to other clients

Future Work:

- Test attacks against defensive aggregation algorithms

- Focus on targeted attacks as opposed to indiscriminate

              Results
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Figure 2: Average Percent Forgetting across all modified and novel attacks in FedWeIT

Figure 1: Visual demonstration of 
Task-Based Sign Flipping 
projected onto a 2D plane

Figure 3: Cosine similarities of all clients where client 4 in Byzantine in 
Task-Based Label Flipping (left) and Incremental Forgetting (right)

- Incremental Forgetting disguises itself better among 
  correct clients (updates have high cosine similarity)

          Discussion
- Sign Flipping attacks were significantly more potent

   than the rest, but lack practicality

- Label Flipping attacks are generally effective and

   easier to implement but basic label flipping on its

   not useful

- Incremental Forgetting is comparable to Task-Based

   Label Flipping and harder to detect

- Incremental Forgetting is only useful in FCL settings

   and requires significant tuning
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θnew-3

ℒ (Model) = α(ℒ (Task)) - (1 - α)(ℒ (θnew, θold))

Dataset: CIFAR100 (IID)
Clients: 5

Rounds∕Task: 10
Local Epochs: 10

Proportion Byzantine: 20%
Model: LeNetWeIT


