
Using local LLMs
in constrained 

environments for 
increasing mutation score 

1.

SBST and fuzzing makes use of algorithms to 
search for new tests cases. For example tools 
like Evosuite and Randoop. These tests capture 
the program well, but are often not usable for 
various reasons.
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TEST GENERATION

Creating mutants of the existing source code to 
create intentional mistakes. Use these mutants 
to see if the existing tests for the program 
catch these mistakes.

2.How effective are local LLMs running in 
constrained environments at increasing 

mutation score?
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3.

METHOD
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4.

RESULTS

Model Runtime

Deepseek Coder 6.7B 15-25s

Code Llama 13B 25-100s

Codestral 22B 20-35s

5.

DISCUSSION

7.6.

LIMITATIONS

The proposed approach is effective at 
increasing the mutation score of manually 
written tests. The mutation score can be 
increased in 4 to 6 out of 12 cases, 
depending on the model. The most important 
factors that impact performance are the 
language of the code (English only) and 
the presence of comments.

COMMENTS ARE IMPORTANT

MODEL SIZE IS LESS SIGNIFICANT

CODE FROM TRAINING SET PERFORMS BETTER

LANGUAGE IS EXTREMELY IMPORTANT

The performance difference between models with
6.7B, 13B and 22B parameters is not very
large. All models were able to generate new
tests at about the same efficiency. The runtime
is also comparable.

Adding comments to code impacts the ability of 
a model to generate tests. Classes with
comments score higher than classes without 
comments.

Some classes in the corpus are available on 
GitHub. All three models were more effective at 
increasing mutation score for these classes, as 
opposed to classes that were not on GitHub, and 
thus likely not in the training set.

LLMs appear to look at more than just syntactic 
and semantic meaning of code. Classes written 
in a foreign language throw off all three 
models so much, they are not able to generate 
any passing tests.

CONCLUSION

Future research can focus on 1) prompt 
engineering, which could improve results 
even more, and 2) new models appear at a 
rapid rate, which could also bring 
performance improvements.

PROMPT MIGHT NOT BE OPTIMAL

Even though prompt engineering is outside the
scope, we performed preliminary testing to find
a prompt which yields good results.

CLASSES MIGHT BE PART OF TRAINING SET

To minimize this risk, the majority of classes 
was taken from the SF110 dataset, which is 
likely not part of the training set

CLASSES MIGHT NOT BE REPRESENTATIVE

We selected classes with a cyclomatic complexity 
of at least 10, and from a variety of different 
projects with different purposes

We compare 3 different LLM models (Deepseek Coder 
6.7B, Code Llama 13B and Codestral 22B), to see how 
effective they are at increasing mutation score by 
generating unit tests for Java.


