
Using local LLMs
in constrained

environments for
increasing mutation score

1.

SBST and fuzzing makes use of algorithms to
search for new tests cases. For example tools
like Evosuite and Randoop. These tests capture
the program well, but are often not usable for
various reasons.

AUTHOR Roelof van der Geest

TEST GENERATION

Creating mutants of the existing source code to
create intentional mistakes. Use these mutants
to see if the existing tests for the program
catch these mistakes.

2.How effective are local LLMs running in
constrained environments at increasing

mutation score?

BACKGROUND

RESEARCH QUESTION

Ask LLM to
generate tests

Combine manually
written tests
with generated
tests

All tests pass?

3.

METHOD

Calculate performance

Yes

No

Remove failing
test

SUPERVISORS A. Panichella, M. Olsthoorn

MUTATION TESTING

42%

25%

8%

25%

Codestral 22B improvement

No improvement

Up to 10%

Up to 30%

Up to 50%

33%

33%

17%

17%

Deepseek Coder 6.7B improvement

No improvement

Up to 10%

Up to 30%

Up to 50%

33%

17%

33%

17%

Code Llama 13B improvement

No improvement

Up to 10%

Up to 30%

Up to 50%

4.

RESULTS

Model Runtime

Deepseek Coder 6.7B 15-25s

Code Llama 13B 25-100s

Codestral 22B 20-35s

5.

DISCUSSION

7.6.

LIMITATIONS

The proposed approach is effective at
increasing the mutation score of manually
written tests. The mutation score can be
increased in 4 to 6 out of 12 cases,
depending on the model. The most important
factors that impact performance are the
language of the code (English only) and
the presence of comments.

COMMENTS ARE IMPORTANT

MODEL SIZE IS LESS SIGNIFICANT

CODE FROM TRAINING SET PERFORMS BETTER

LANGUAGE IS EXTREMELY IMPORTANT

The performance difference between models with
6.7B, 13B and 22B parameters is not very
large. All models were able to generate new
tests at about the same efficiency. The runtime
is also comparable.

Adding comments to code impacts the ability of
a model to generate tests. Classes with
comments score higher than classes without
comments.

Some classes in the corpus are available on
GitHub. All three models were more effective at
increasing mutation score for these classes, as
opposed to classes that were not on GitHub, and
thus likely not in the training set.

LLMs appear to look at more than just syntactic
and semantic meaning of code. Classes written
in a foreign language throw off all three
models so much, they are not able to generate
any passing tests.

CONCLUSION

Future research can focus on 1) prompt
engineering, which could improve results
even more, and 2) new models appear at a
rapid rate, which could also bring
performance improvements.

PROMPT MIGHT NOT BE OPTIMAL

Even though prompt engineering is outside the
scope, we performed preliminary testing to find
a prompt which yields good results.

CLASSES MIGHT BE PART OF TRAINING SET

To minimize this risk, the majority of classes
was taken from the SF110 dataset, which is
likely not part of the training set

CLASSES MIGHT NOT BE REPRESENTATIVE

We selected classes with a cyclomatic complexity
of at least 10, and from a variety of different
projects with different purposes

We compare 3 different LLM models (Deepseek Coder
6.7B, Code Llama 13B and Codestral 22B), to see how
effective they are at increasing mutation score by
generating unit tests for Java.

