How is property-based testing used in real-world Python projects?

A case study of the Hypothesis framework

What is Property-Based Testing (PBT)?

Testing functionality with large amounts of automatically generated data

Generator
Construct that generates test data of a certain type

Test that the elements in the sorted list the same as the original list
@given(st.lists(st.integers(), min_size=1, max_size=18)
def test_merge_sort_same_clements(xs: list):
sorted_list = merge_sort(xs)
for elem in xsT e
assert elem in sorted_list
assert len(sorted_list) == len(xs)

Constructs that limit te:

Assertion
Function that checks whether some proposition helds

System under Test (SUT)
Code entity of which the functionality is tested by a property-
based test

Relation or invariant that should hold

Property

Filters
st data generation

list Hypothesis as
dependency on
GitHub

Sort by # GitHub
stars

Select top
repositories with =
25PBTs

Find repositories that

How did we Collect and Analyze Data?

Qualitative Analysis through Open Coding — -

—_

~

N

ogi
me-hypothenta. strategies boaleans (), ot

viine) S i b
ypoztest (binary) , oavlie-neutise) | beop o,
padtasticenverted

od, restored, nevline-nevlise)

Open Coding

Assigning labels
to parts of the
tests to identify
emerging

Test name #assertions Custom Category

generation

Repository

tast_count 1 Test Oracle

test map set del 2 Postcondition

Average/Total

concepts.

Research by David de Koning in Partial Fulfilment of the Requirements

What did we find?

Top Categories & Key Features

Roundtrip: testing an operation
and its reverse.

Post-condition: ensuring a simple
condition on the outcome of the
SUT.

Oracle-based testing: checking
an SUT against
* anequivalent system,
» areference implementation,
» atestoracle.

Sometimes used for non-
functional properties.

Often a generalization of unit
tests.

Custom assertions
No custom shrinking

Complex Value Generation
» Custom Generation for objects
» Dynamic Generation for
interdependency
» Generating the SUT
» Transforming generated values

differentPathsSameDestination
idempotence

——
I

]

transformationinvariance
additivity

monotonicity

symmetry
referenceConsistency

[
- 2
-_— 2
-1

equivalenceExtensionality
argumentldempotence
outputjustification
postCondition
exceptionGuarantee
noException
testByRunning
objectCached
recursionPerformance

]

- 2

LI}
I 15
-1

I

I

I

- 2

Freguencies of categories identified in 87 property-based tests that us
Hypothesis in Python.

& F]
& & & & & & 7 &
& S G & g 2
& o @ é- o L P &
PN P R
FONIF R LR P
£ ¥ -3
< S & o
R
< &
o
Fi ies of key in 87 property-based tests that us

Hypethesis in Python.

/ What does that mean?

Improving frameworks and education

1. Using property-based testing to generalize unit
tests.

2. Custom shrinking possibly unnecessary - if
implemented well by framework.

3. Decomposing property-based tests to simplify
them
* [f multiple assertions: split on assertion,
* [f assertions conditionalized: split on condition,
* [f SUT generated by PBT framework: split on SUT.

/ What more could be

researched?

The future is in our hands...
- Extend dataset to include more repositories
= Different selection procedure for repositories
= More cross-framework analysis
= Temporal analysis using Git histories

= Automated analysis using machine learning

Supervisors: Andreea Costea, Sara JuhoSova
Email: david.dekoning-2@student.tudelft.nl

for the Bachelor of Computer Science and Engineering

Delft
e t University of
Technology

	How is property-based testing used in real-world Python projects?�A case study of the Hypothesis framework

