
1. What Is Agda?

Code Extraction From a Dependently Typed Language -
“How Effectively Does Forth Serve as a Target Language for Extraction From 

Agda?”
Louis Milliken – Lmilliken@student.tudelft.nl

Supervised by Jesper Cockx, Lucas Escot

• Pure functional language
• Dependently typed
• A dependent type are type whose 

definition depends on another 
value.

• E.g. (Vec 5)could represent an 
array of length 5

• Used to provide guarantees 
about code and write proofs

• Lazy evaluation
• Some code is unused after 

compilation

2. What Is Forth?
• Stack based, imperative language
• Untyped
• Values are pushed onto the stack 

instead of being passed as 
arguments

• Words (functions) pop values off 
the stack to use them

• Strict evaluation

3. The Problem
• How to translate Agda to Forth?
• How will it perform compared to other 

compilers? (Haskell, Scheme)
• Is it even possible to implement every 

feature of Agda in Forth
• If not, how much can be?

6. Example Translations

5. Conclusions
• Forth is not a very good target 

language
• Lack support for too many features 

of Agda
• Improvements to my compiler 

could greatly improve performance
• Improve thunk handling
• Consider different Forth

implementations

[1] Agda GHC Backend: 

https://agda.readthedocs.io/en/v2.6.2.1/tools/compilers.html#ghc-backend

Fig. 1: Runtimes for consume function with 

inputs 0 - 15
Fig. 2: Runtimes for consume function with 

inputs 0 - 24

4. Results

Fig. 3: consume function in Agda

Fig. 4: consume function in Forth

Fig. 5: ite (if, then else) function in Agda

Fig. 6: ite (if, then else) function in Forth

mailto:Lmilliken@student.tudelft.nl

