
“What design choices can be made to adapt the forward
propagation extraction algorithm into SymbolicPlanners?”

Bases on the algorithm described by Zhu & Givan[1]
Using labels to forward propagate predicates and extracting
landmarks using the labels of goal state predicates

SymbolicPlanners
Written in Julia and missing landmark extraction methods

Fast Downward
Written in C++ and has forward propagation extraction
method

Extending SymbolicPlanners with forward propagation landmark extraction
Ka Fui Yang

Background

Result

Methodology

References

Conclusion

Table 1. Problem instances
with correct amount of LM
extracted per domain.

[1] Lin Zhu and Robert Givan. Landmark extraction via planning graph propagation. ICAPS
Doctoral Consortium, pages 156–160, 2003

Problem description

Classical planning problem
Find a sequence of actions to go from the initial state to the
goal state, where the states are defined by predicates
Actions changes state by adding or deleting predicates

Landmarks
States necessary to achieve goal state in every successful
plan

Relaxed planning graph
Planning graph is a directed, leveled graph where the levels
alternate between action and predicate node
RPG is a planning graph with delete predicates omitted
Mutex exclusion not necessary but verification of landmark
is

Grounding using PDDL.jl
Predicates and action schemas instantiated using objects
from problem instance and domain file

From SymbolicPlanners use the build RPG method
act_parents: Contains the effect of action
act_children: Contains preconditions of action
cond_children: Contains actions where precondition is equal
to condition

Design choices for representing the layers with labels using the
RPG
Propagate labels using combination of union and intersection
Using queue to add actions that needs to be applied
Using map to get actions from newly added conditions in new
layer
Create Landmark graph using last layer and goal state.

Performance
Equal amount of LM extracted using SymbolicPlanners and
Fast Downward implementation
Runtime between forward propagation, backward search
and Fast Downward

Implementation does not
extract the same number
of LM as Fast Downward
in complex domains such
as Freecell and Grid.
Implementation extracts
the correct number LM
for simple domains such
as Blocksworld and
Logistics.

Implementation stops
extracting new LM at
problem sizes bigger than
68 in Tireworld domain
Method is 2 times slower
compared to Fast
Downward while running
forward propagation but
not extracting new LM

Grounding complex
domains is expensive and
SymbolicPlanners RPG
method has a limitation.
Forward propagation with
verification is significantly
slower compared to
without verification while
removing no LM.

Incorrect amount of LM extracted in complex domains but
correct amount of LM extracted in simple domains
PDDL.jl that SymbolicPlanners uses for RPG is not grounding
complex domains properly
Runtime for the implementation without verification is only 2
times slower compared to Fast Downward implementation

Initial state Goal state

Figure 1. A problem instance in Blocksworld domain
where A, B and C are objects.

Figure 2. Number of LM extracted in Tireworld
domain.

Figure 3. Runtime of SymbolicPlanners and Fast
Downward implementation on Tireworld domain.

Author: Ka Fui Yang Contact: K.F.Yang@student.tudelft.nl Supervisor: Issa K. Hanou Responsible professor: Sebastijan Dumančić

Acknowledgement
Firstly, Paul Tervoort for providing me with his implementation of landmark extraction and
verification. Secondly, the rest of the research group consisting of Pauline Hengst, Noah Tjoen
and Bar van Maris for constant discussion and insight on the shared topic. Thirdly, our
supervisor Issa Hanou and responsible professor Sebastijan Dumančić for providing feedback
and answering questions weekly.

