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INTRODUCTION Localization services are widely used

iIn mobile app development. While
outdoor localization already provides
precise localization with GPS, using
GPS indoors comes with challenges|1]
that result in accuracy to low for room
recognition. There are however real
word applications where indoor
localization would prove helpful.

BACKG ROUND Since there are possible applications

for an indoor localization service over
the past years there were multiple
proposed solutions that make use of a
range of different technologies and
algorithms.

RESEARCH Can the robustness of the system

against music containing environment

QU ESTION be improved?
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FIG 1: SPECTROGRAM CREATION FOR CNN INPUT STEP BY STEP

Use cases:
e Indoor way-finding
e Hospital patient localization
o Automated museum tour guides
e Smart-building automatization
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FIG 3: MEAN SPECTROGRAMS SHOWING HOW MUSIC

IMPACTS THE SYSTEM
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Multiple classes of solutions:
e Acoustic, WIFI based, mixed, etc.
e Infrastructure-free / Infrastructure-
dependant
e Passive sensing[2] / Active
sensing[3]

Sub-questions:

e How is the system affected by
the presence of music in the
environment?

e Can deep learning methods be
used to improve robustness
against music in the
environment?
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.ementing proof of concept application - Fig 1, 2
e Gathering required datasets

luating the impact of music on the system - Fig 3
e Designing the autoencoder

e Evaluating the performance of the system with and without music ith and

AUTOENCODER DESIGN

Encoder: Decoder:

e Convolutional layer - 16 5x5
filter

o Max pooling layer - 2x2 filter

e Convolutional layer - 16 5x5
filter

e Max pooling layer - 2x2 filter
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e Transposed convolutional
layer - 16 5x5 filters

e Transposed convolutional
layer - 16 5x5 filters

e Convolutional layer -1 5x5
filter
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FIG 4:EXPERIMENT RESULTS
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FIG 2: MOBILE APPLICATION DESIGN
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Top 5 labels

No music 0.91 0.07 0.81 0.05
Music 0.70 010 0.76 0.09
Mixed 0.81 0.06 0.79 0.04

e Adding the autoencoder introduces a tradeoff between
accuracy in music-containing environments and quiet

environments - Fig 4

e Accuracy was improved in music-containing environments:

o Lower accuracy drop
o Higher accuracy

 Robustness of the system stayed relatively the same,
represented by mixed dataset results
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