INDOOR LOCATION SENSING USING SMARTPHONE ACOUSTIC SYSTEM

FILIP BILIŃSKI F.K.Bilinski@student.tudelft.nl

TU DELFT FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS, AND COMPUTER SCIENCE

Supervisor: Qun Song

INTRODUCTION

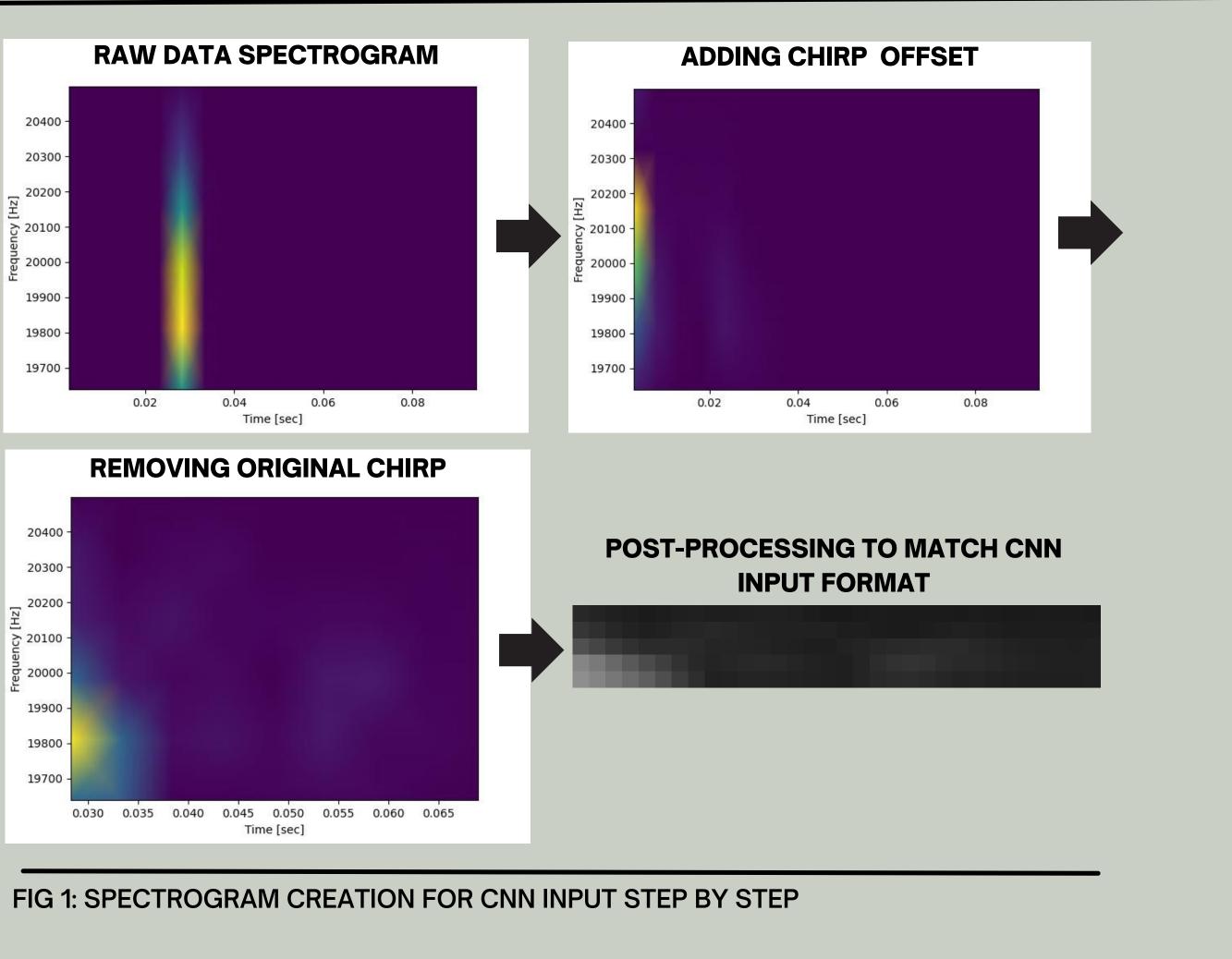
Localization services in mobile app develo outdoor localization precise localization GPS indoors comes that result in accurac recognition. There ar word applications wi localization would pr

BACKGROUND

RESEARCH QUESTION

Since there are possi for an indoor localiza the past years there proposed solutions range of different tec algorithms.

Can the robustness against music contain be improved?



s are widely used opment. While already provides with GPS, using with challenges[1] cy to low for room re however real where indoor rove helpful.	 Use cases: Indoor way-finding Hospital patient localization Automated museum tour guides Smart-building automatization 	F
sible applications ation service over were multiple that make use of a chnologies and	 Multiple classes of solutions: Acoustic, WIFI based, mixed, etc. Infrastructure-free / Infrastructure-dependant Passive sensing[2] / Active sensing[3] 	0 Irne lapel 2 -
s of the system ining environment	Sub-questions: • How is the system affected by the presence of music in the	3 · N
	 environment? Can deep learning methods be used to improve robustness against music in the environment? 	0 Itre laber 2

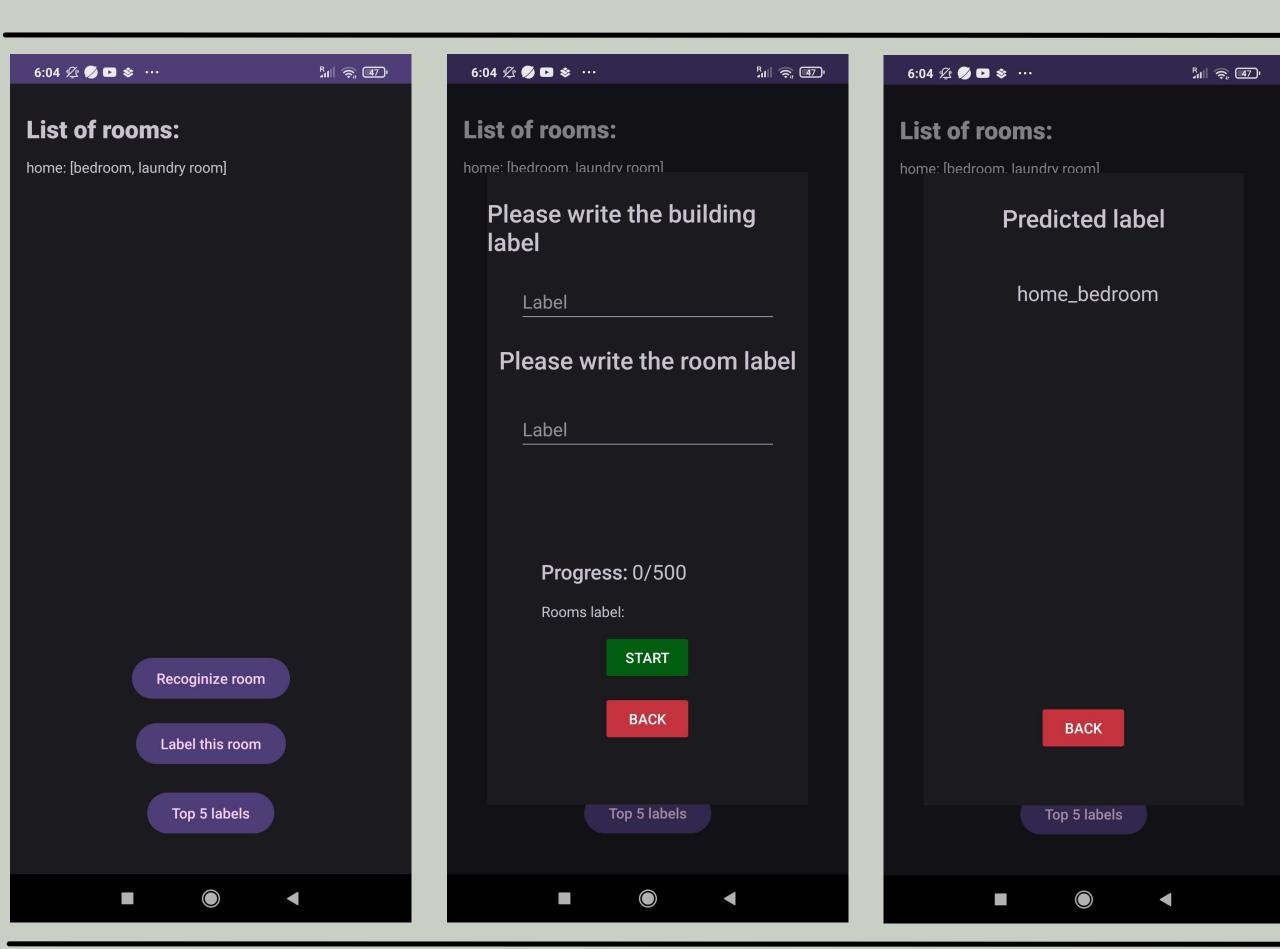
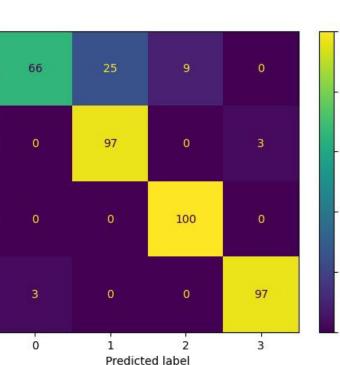


FIG 2: MOBILE APPLICATION DESIGN

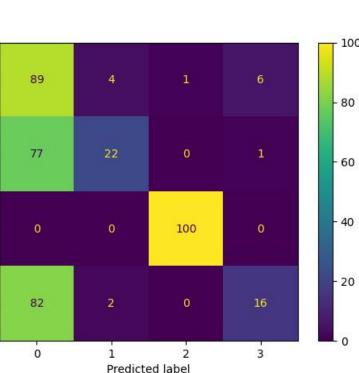
MEAN SPECTROGRAM WITHOUT MUSIC

MEAN SPECTROGRAM WITH MUSIC

IG 3: MEAN SPECTROGRAMS SHOWING HOW MUSIC IMPACTS THE SYSTEM



O MUSIC NO AUTOENCODER



WITH MUSIC NO AUTOENCODER

FIG 4:EXPERIMENT RESULTS

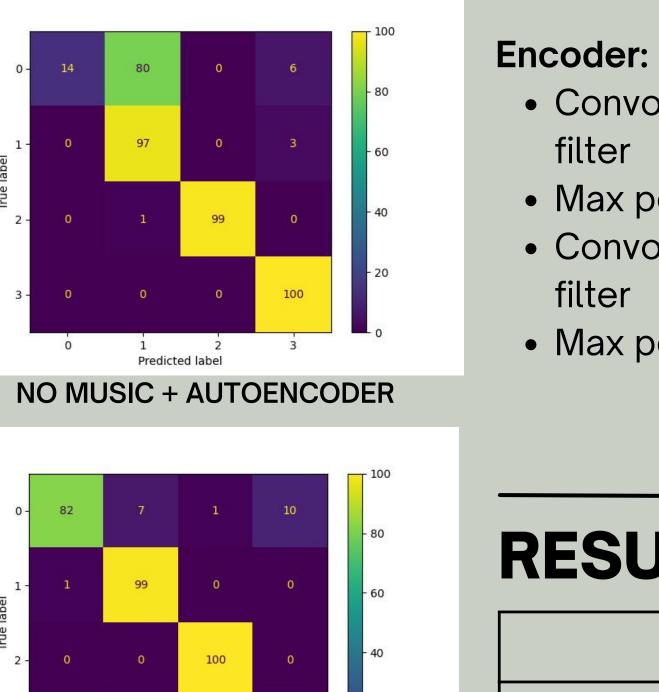
METHODOLOGY

- Implementing proof of concept application Fig 1, 2
- Gathering required datasets
- Evaluating the impact of music on the system Fig 3
- Designing the autoencoder

filter

filter

• Evaluating the performance of the system with and without music ith and without autoencoder



0 1 2 3 Predicted label WITH MUSIC + AUTOENCODER

RESULTS No music Music Mixed

- Adding the autoencoder introduces a tradeoff between accuracy in music-containing environments and quiet environments - Fig 4
- Accuracy was improved in music-containing environments: Lower accuracy drop • Higher accuracy
- Robustness of the system stayed relatively the same, represented by mixed dataset results

REFERENCES:

[1] G. DEDES AND A.G. DEMPSTER. INDOOR GPS POSITIONING CHALLENGES AND **OPPORTUNITIES. IN VTC-2005-FALL. 2005 IEEE 62ND VEHICULAR TECHNOLOGY CONFERENCE,** 2005., VOLUME 1, PAGES 412–415, 2005

[2] STEPHEN P. TARZIA, PETER A. DINDA, ROBERT P. DICK, AND GOKHAN MEMIK. INDOOR LOCALIZATION WITHOUT INFRASTRUCTURE USING THE ACOUSTIC BACKGROUND SPECTRUM. IN MOBISYS 11: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS, APPLICATIONS, AND SERVICES, PAGES 155–168, 2011.

[3] QUN SONG, CHAOJIE GU, AND RUI TAN. DEEP ROOM RECOGNITION USING INAUDIBLE ECHOS, 2018.

TUDelft

AUTOENCODER DESIGN

• Convolutional layer - 16 5x5

• Max pooling layer - 2x2 filter

Convolutional layer - 16 5x5

Decoder:

- Transposed convolutional layer - 16 5x5 filters
- Transposed convolutional layer - 16 5x5 filters
- Convolutional layer 15x5 filter
- Max pooling layer 2x2 filter

No Autoencoder		With Autoencoder	
Average	std dev	Average	std dev
0.91	0.07	0.81	0.05
0.70	0.10	0.76	0.09
0.81	0.06	0.79	0.04