
1. Introduction

AI in Coding: How can code generation models support developing 
computational thinking skills?

2. Research Question

Author: Rick Mulder Supervisor: Xiaoling Zhang Responsible Professor: Fenia Aivaloglou

4. Results

With the recent AI developments, code generation 
models are able to better support and create code for 
programming. 
This leads to the question of how good the current 
state of AI code support is, and for what kind of 
programming activities it can be used.

RQ1: For what kind of programming support activities 
have the code generation models been used?
RQ2: How successful have they been considering these 
activities?

3. Method

We conducted a systematic literature review in order to 
find out how code generation models have been used 
in programming activities, either directly or by 
integrating it in a tool.
We synthesized the different works based on the 
supported activity. 
The categories were extracted from the most 
commonly found activities, and a sixth category was 
made for other works that would fit in either none or 
multiple categories.

5. Conclusions
Several uses for GPT models to support programming have been found.
The current results are promising, but not yet applicable in a realistic environment.
However, at the current pace, it will not take long before we might see reliable AI support in 
programming.
The most important aspects for future research seem to be prompt engineering and finding the 
best ways to interface with these models.

6. References
[1] Trummer, Immanuel. CodexDB: Generating Code for Processing SQL Queries using GPT-3 Codex 
2022.

[2] Li, Jia et al. SkCoder: A Sketch-based Approach for Automatic Code Generation 2023.

[3] Maddigan, Paula / Susnjak, Teo. Chat2VIS: Generating Data Visualizations via Natural Language 
Using ChatGPT, Codex and GPT-3 Large Language Models 2023.

[4] Chandra Thapa et al. Transformer-based language models for software vulnerability detection. page 
481 – 496. Association for Computing Machinery, 2022.

[5] Maliheh Izadi et al. Codefill: Multi-token code completion by jointly learning from structure and 
naming sequences. volume 2022-May, page 401 – 412. IEEE Computer Society, 2022.

Activity Findings

Code Generation ● Codex most used
● Top 25% on introductory programming exercises
● Sketch-based code generation promising results [2]

Code Documentation ● Inaccurate with Zero-shot learning
● Few-shot learning allows adding extra details

Code Explanation ● Extensions in IDE’s
● 67% correct explanations
● Explain error messages, and suggests correct fixes in 33% of the cases

Data Visualisation ● Natural language into SQL queries [1]
● High success-rate with few-shot learning (80%)
● Robust against under- and miss-specification

Software Vulnerability 
Detection

● Current Large Language Models perform well
● High F1-score on most vulnerabilities (up to 93%) 
● Other vulnerabilities such as API function calls still harder to detect 

(78%) [5]

General Programming 
Support

● Co-coding with AI possibility
● Support of non-programmers
● More advanced IDE token prediction, like multi-token [5]PRISMA Flowchart


