
Evolution of modern Structural Diff Algorithms
A detailed analysis of heuristic advancements in structural diff algorithms for scalable and 
accurate code differencing.

Author: Maciej Mejer (m.j.mejer@student.tudelft.nl)

Poster style inspired by: Jakub Rutkowski

Supervisor: Quentin Le Dilavrec

Responsible Professor: Carolin Brandt 

1 Structural Code Diffs
What are structural diffs?

Unlike traditional line-based diffs, structural code diffs operate on Abstract 
Syntax Trees (ASTs). This enables them to capture the structure and intent 
of code changes, such as moving, renaming, or refactoring elements, rather 
than just tracking insertions and deletions of lines.

Why do we need them?  
Line-based diffs are often misleading—renames look like deletions and 
insertions, and moves are missed entirely. Structural diffs generate concise, 
semantically meaningful edit scripts that reflect how developers perceive 
changes. This improves tools like version control systems, branch merging, 
and automated refactoring.

What challenges do they pose? 
Computing diffs over trees requires solving the Tree Edit Distance (TED) 
problem, which is NP-hard. Exact solutions do not scale. Practical systems 
must rely on heuristics that balance script quality and runtime, while 
ensuring results are still accurate

4 Evaluation
Main Question 
How do refinements in AST differencing 
algorithms improve the trade-off between 
performance, scalability, and script 
quality?

To answer this, we define subquestions 
focused on each major refinement: 
GumTree’s optimal recovery, Simple’s 
heuristic strategy, and HyperDiff’s 
compressed AST. Each is evaluated in 
isolation to understand its specific 
impact.


Methodology 
We evaluate the algorithms on 
2045 Java file pairs. For every 
algorithm, we isolate all phases 
and measure runtime and 
script quality. Runtime is 
recorded using Criterion.rs to 
ensure statistically reliable and 
reproducible results. This setup 
allows us to attribute 
improvements to specific 
refinements in each algorithm.

3 Diff algorithm evolution

4 HyperDiff

 Leverages HyperAST, a 
compressed AST structure that 
shares repeated subtrees

 Detects identical subtrees 
efficiently without traversal

 Matches GumTree in quality but 
improves performance by up to 
12× in real-world benchmarks

 Especially effective when code 
has many repeated constructs.

3 GumTree Simple

 Replaces optimal recovery with a 
fast heuristic

 Trades some precision for 
dramatic runtime and stability 
gains

 Maintains quality on large trees 
where GumTree’s recovery is 
skipped

 Becomes more accurate than 
GumTree on large codebases due 
to fewer omissions.

2 GumTree

 Introduces an optimal recovery 
algorithm that inspects entire 
subtrees

 Captures complex refactorings 
and nested changes

 High-quality edit scripts, but 
costly: runtime grows rapidly with 
AST size

 Introduces MAX_SIZE to skip 
recovery on large subtrees.

1 Xy Algorithm

 First to adopt the 3-phase model 
for tree differencing (from XML)

 Very fast, but recovery phase is 
shallow: only considers direct 
children

 Provides a flexible base, but 
performs poorly on complex 
code structures.

Summary

Over time, structural diff algorithms evolved from a generic, XML-focused 
design (Xy) toward highly specialized tools for code. GumTree introduced 
optimal recovery, significantly improving accuracy but at a high 
computational cost. GumTree Simple responded with a scalable heuristic, 
reducing runtime while maintaining quality on large trees. HyperDiff 
further improved performance using a compressed AST representation, 
maintaining GumTree’s quality with up to 12× faster execution.

2 Solution

Three-phase algorithm design 
Each phase of the algorithm is responsible for finding a portion of the node 
mappings. By separating the process into distinct phases, we can improve 
each part independently.


: Detects large identical subtrees, anchoring identical 
subtrees.


: Builds on these anchors by matching parent nodes based 
on their already-mapped descendants.


: Performs detailed local matching to capture fine-grained 
edits that were missed earlier.

Subtree phase

Bottom-up phase

Recovery phase

Approach 
We use abstract syntax trees (ASTs) to 
represent the structure of code in a way 
that captures its syntax and semantics. 
The actual edit operations—insertions, 
deletions, moves, and updates—are 
derived from a set of node mappings 
using the Chawathe algorithm.

What are mappings? 
Mappings are one-to-one 
correspondences between nodes in the 
source and target ASTs that share the 
same label and represent equivalent 
syntactic constructs. A high-quality set 
of mappings leads directly to a more 
concise and interpretable edit script.



