
4. The Haskell-like language (HLL)

Jeroen Bastenhof ‒ J.Bastenhof@student.tudelft.nl

Supervisors: J.G.H. Cockx, L. Miljak

Proving correctness of refactoring tuples to records
A correct-by-construction approach on a Haskell-like language

7. References
[1] D. Horpácsi, J. Kőszegi, and S. Thompson, “Towards Trustworthy Refactoring in Erlang,” Electronic Proceedings in Theoretical Computer Science, vol. 216, pp. 83–103, 7 2016.
[2] E. A. AlOmar, M. W. Mkaouer, C. Newman, and A. Ouni, “On preserving the behavior in software refactoring: A systematic mapping study,” Information and Software Technology, vol. 140, p. 106675, 2021.
[3] L. Miran, Learn you a Haskell for great good!: A beginner’s guide, ch. Making Our Own Types and Type Classes. No Starch Press, 2012.

Listing 1. Tuple to record refactoring example based on work by
Miran [3].

1. Agda

Dependently typed functional programming language.
Can be used as a proof assistant.
Formal verification.

2. Motivation

How to ensure a refactoring is correct?
Extensive testing increases confidence, but provides no explicit
guarantees as opposed to a formal verification [1].
Less attention for functional languages as opposed to class-
based, object-oriented languages [2].

Listing 3. Tuple and record-related constructors for the HLL. Listing 2. Big-step semantics for tuple and record-related constructs.
3. Refactoring tuples to records

Tuples are less explicit compared to records.
Record field accessors provide layer of abstraction.
Not possible to distinguish tuples during refactoring when they
have the same signature, but different representation.
Is proving the correctness of tuple to record refactoring feasible?

5. Apply refactoring to the HLL

Figure 1. Example of
the refactored
declaration context at
different levels of a
language construct.
Dashed circles indicate
refactored tuples.

Refactoring operation: for all tuples, generate a record declaration and replace the tuple by a record
instance of that declaration. All declarations are globally known.
Make a sub-expression aware of its context by providing a trace. This helps to update existing record
declaration lookups and generate new ones for situations similar to figure 1.

Intrinsically-well-typed language constructed in Agda that forms the foundation of the refactoring operation and the proofs.

6. Proving correctness and conclusions

Due to the use of an intrinsically-typed language, the refactoring operation is also a well-typedness proof.
Prove that the refactoring replaces all tuples by mapping a refactored expression to a construct that does not support tuples.
Relation construct is used to show how the refactoring alters the evaluated value of an expression.
Successfully constructing these proofs leads to a positive feasibility indication.
Techniques can be reused for other functional programming languages that share the notion of tuples and records (e.g., Erlang).


