MULTI-AGENT REINFORCEMENT LEARNING WITH
CENTRALIZED CRITIC

ENVIRONMENTS

1.INTRODUCTION

e Reinforcement learning to train agents in multi-agent
collaborative environments through self-play

e |[n a multi-agent environment, training each agent individually is
problematic: all agents learn at once — policies change = non-
stationary environment

e Multi-agent with centralized critics = agents’ policies become
part of the environment — stationary environment.

o Self-play: good results when evaluated with itself, poor results
with new partners

IN COLLABORATIVE

2.0BJECTIVE

"Does a multi-agent reinforcement learning algorithm
with centralized critics generalize better to new
partners compared to a single-agent approach in a
collaborative environment?”

We will look at:
e performance during training
e level of generalization

4 RESULTS
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Figure 2: Mean Episode Reward during the training for PPO (blue) and
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Figure 3: Mean Episode Reward during evaluation for different agent pairs: PPO-PPO
(light grey), PPO-BC (orange), MAPPO-MAPPO (light blue) and MAPPO-BC (dark blue)

The multi-agent algorithm with centralized critics does not
generalize better than the single-agent one as per Figure 3:
e Depending on the layout, one algorithm performs better
than the other
e Whenever an algorithm performs better than the other,
the difference in results is negligible
e Difference in performance due to seed initialization

e MAPPO consistently provides a smaller variance than
PPO
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3.METHODOLOGY

Environment:
e Simplified version of the Overcooked game in [1] (Figure 1)

Algorithms:
e Multi-agent with Centralized critics: MAPPO
e Single-agent: PPO [2]
e Behavior cloning (BC) (using human data)

Experimental flow:
e Train PPO & MAPPO agents through self-play
e Compare the performance during training
e Evaluate the performance of algorithms in self-play
e Train BC agent using human data
e Pair PPO & MAPPO with a human model to obtain the level of
generalization
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Figure 1: Overcooked layouts used
in the study. Source [1]

5.CONCLUSIONS & FUTURE WORK-

Future work:

e Use a more complex and
potentially more
generalizable observation
space

e Implement a visual
representation for the
evaluation to better observe
the agent's behaviour

e Use more agent types while
training

Summary:

e The centralized critics
algorithm does not result in a
better level of generalization
when compared to its single-
agent counterpart

e The multi-agent algorithm
trains models twice as fast as
the single-agent approach and
shows a more consistent
performance over all layouts
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