MULTI-AGENT REINFORCEMENT LEARNING WITH CENTRALIZED CRITIC IN COLLABORATIVE ENVIRONMENTS

1.INTRODUCTION

- Reinforcement learning to train agents in multi-agent collaborative environments through self-play
- In a multi-agent environment, training each agent individually is problematic: all agents learn at once \rightarrow policies change \rightarrow nonstationary environment
- Multi-agent with centralized critics \rightarrow agents' policies become part of the environment \rightarrow stationary environment.
- Self-play: good results when evaluated with itself, poor results with new partners

4.RESULTS

MAPPO (orange) converges twice as fast to an optimal reward value when compared to PPO (blue) (values displayed in millions of timesteps) as per Figure 2:

- Cramped room: ~0.5m (MAPPO) vs. ~1m (PPO)
- Asymmetric Advantages: ~0.6m (MAPPO) vs. ~1.2m (PPO)
- Coordination Ring: ~1m (MAPPO) vs. ~2m (PPO)

400

<u>ହ</u> 300

0.5

Figure 3: Mean Episode Reward during evaluation for different agent pairs: PPO-PPO (light grey), PPO-BC (orange), MAPPO-MAPPO (light blue) and MAPPO-BC (dark blue)

RELATED LITERATURE

[1] M. Carroll, R. Shah, M. K. Ho, et al., "On the utility of learning about humans or human-ai coordination," CoRR, vol. abs/1910.05789, 2019. arXiv: 1910.05789. [2] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, "Proximal policy optimization algorithms," CoRR, vol. abs/1707.06347, 2017. arXiv: 1707.06347.

2.OBJECTIVE —

"Does a multi-agent reinforcement learning algorithm with centralized critics generalize better to new partners compared to a single-agent approach in a collaborative environment?"

We will look at:

- performance during training
- level of generalization

The multi-agent algorithm with centralized critics does not generalize better than the single-agent one as per Figure 3: • Depending on the layout, one algorithm performs better

- than the other
- the difference in results is negligible
- Whenever an algorithm performs better than the other, • Difference in performance due to seed initialization
- MAPPO consistently provides a smaller variance than PPO

Environment:

Algorithms:

- Single-agent: PPO [2]

Experimental flow:

- Train BC agent using human data
- generalization

Cramped Room

Summary:

- The centralized critics algorithm does not result in a better level of generalization when compared to its singleagent counterpart
- The multi-agent algorithm trains models twice as fast as the single-agent approach and shows a more consistent performance over all layouts

• Simplified version of the Overcooked game in [1] (Figure 1)

• Multi-agent with Centralized critics: MAPPO • Behavior cloning (BC) (using human data)

• Train PPO & MAPPO agents through self-play • Compare the performance during training • Evaluate the performance of algorithms in self-play • Pair PPO & MAPPO with a human model to obtain the level of

Asymmetric Advanatages

Figure 1: Overcooked layouts used in the study. Source [1]

Coordination Ring

5.CONCLUSIONS & FUTURE WORK-

Future work:

- Use a more complex and potentially more generalizable observation space
- Implement a visual representation for the evaluation to better observe the agent's behaviour
- Use more agent types while training