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Physics-informed neural networks
(PINNs)

Physics-Informed Neural Networks (PINNs) are
intended to solve complex problems that obey
physical rules or laws but have noisy or little
data. These problems are encountered in a
wide range of fields including for instance
bioengineering, fluid mechanics, meta-material
design and high-dimensional partial
differential equations (PDEs) [1]. Where a
classic deep neural network uses known
labeled data to calculate the current loss of a
neural network, a PINN uses rules and
calculates how closely the neural network
adheres to the rules.

Spectral Bias of PINNs
Whilst PINNs show promising results, they
often fail to converge in the presence of higher
frequency components [2]; a problem known
as the spectral bias. Multiple studies have
explored ways to overcome or minimize
spectral bias specifically for PINNs [3]. This
paper builds on previous studies by
investigating the impact of different gradient
descent methods on the spectral bias.

How do different methods of gradient descent

impact the spectral bias of physcis-informed

neural networks for partial differential equations?

The effect of gradient descent methods on
the spectral bias of PINNs for PDEs has been
investigated as follows: 

1. First, gradient descent methods to test are
selected based on their expected strengths
[4]  regarding a PINN loss landscape [5]. 
Selected methods of gradient descent:

Normal Stochastic Gradient Descent (SGD)
Stochastic Gradient Descent with Momentum
(SGDM)
Nesterov Accelerated Gradient Descent
(Nesterov)
Adagrad gradient descent (Adagrad)
Adam Gradient Descent (ADAM)

2. Two PDEs are selected specifically so that
their frequency can be varied while keeping
other parameters constant and still having
an analytical solution for each frequency.
Selected PDEs:

1D Wave PDE
1D Poisson PDE

3. Finally,  for all methods of gradient
descent, and for all PDEs, the effect of
increasing the frequency of the PDE on the
convergence of the PINN will be explored. 

To do this multiple experiments have been
performed. Firstly, for the 1D Wave PDE two
frequnecies are chosen and the results are
compared. For the 1D Poisson PDE an experiment is
performed in which the frequency is increased in
small steps and the corresponding loss is stored.

Figure 1: Heatmaps of 1D Wave PDE:
Solution (Top) and predictions below.
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Figure 2:
Residual L2
losses for
different
gradient
descent

methods and
varying

frequency of the
1D Poisson PDE. 

In Figure 1 it can be seen that the higher frequency (4Hz) is predicted less
accurately than the lower frequency (2Hz) for all gradient descent
methods. Adagrad does not converge at all even for the lower frequency.
Overall in Figure 1 gradient descent methods that use momentum
(Nesterov, SGDM and ADAM) achieve a (visually) better solution than
those that do not.
Within the methods with momentum, Nesterov performs worst, and
ADAM performs best.
In Figure 2 an L2 residual loss of 1 means that the PINN did not converge.
The frequency (a) at which the gradient descent method start to fail can
therefore be seen in Figure 2 where the loss increases from 0 to 1.
The first methods to fail are the methods without momentum (SGD and
Adagrad), and the gradient descent methods that use momentum
(Nesterov, SGDM and ADAM) perform well up to higher frequencies. 
Also, in Figure 2 we see that ADAM fails last when increasing the
frequency and performs best at high frequencies.

The method of gradient descent has a significant impact on the spectral bias of PINNs. 

Momentum seems to be the most important component of a gradient descent optimizer.

Within the methods with momentum, Nesterov performs worst, and ADAM performs best.

Also, ADAM’s performance deteriorates more gradually, still providing an approximation of

the target function at the higher frequencies rather than complete failure.
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