Single-cell RNA sequencing(scRNAseq) is a new techinque to
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measure expression levels of indivivdal cells. Analysis of this data
I n a ry has lead to valuable biological insights. However, as datasets Gene 2

Include more cells, this analysis becomes more and more e

computationally intense. This research looks into time-efficiency
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Introduction

L
u a U a t I n g « SCRNAseq datasets have been increasing in both number of cells measured and
sparsity

» Clustering of these datasets costs a lot of time and memory
- Previous research [1] has shown that storing the data in a binary format (Figure 1) can

L
reduce storage costs, while retaining most of the biological information. .
I U n I m e « This suggests that a specialized algorithm for binary data could be more time-efficient
- We introduce two versions of a binary clustering algorithm: 1 ] 1

o Exact, where every cell is compared to every other cell Fig 1: Converting scRNAseq data
o Approximated, cells are only compared to cells that are likely to be similar
« The binary approaches are experimentally compared to an existing library (Seurat)
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« When the number of dimensions is equal, binary clustering is much faster

« Approximation of kNN graph is required to be competitive on datasets with more cells

« Dimensionality reduction is required to be competetive on datasets with more genes
Overall, binary clustering shows promise, since it could be faster than Seurat with the right

additions and modifications. Proper approximation and dimensionality reduction techniques are
essential to achieve this.
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